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Preface

The 8th International Workshop on Folk Music Analysis was held from 26 to 29 June 2018 in Thessaloniki,
Greece. This International Workshop brings together researchers from the fields of ethnomusicology, musicol-
ogy and music information retrieval (MIR). It provides a forum that encourages sharing of ideas, needs, re-
search methods and discoveries, among ethnomusicologists, musicians, librarians, students, museum curators,
computer science experts and music information retrieval researchers. The aim is to foster cross-disciplinary
collaborative networks and the development of new interdisciplinary tools and techniques that promote an
enriched understanding of traditional musics and the preservation/dissemination of world musical cultural her-
itage.

We believe that the discussions we had during this workshop were diverse and encouraging, also thanks to the
Analytic Approaches to World Music Conference (AAWM) that was hold at the same venue in parallel to the
FMA. We see that the year-long effort to continue the FMA resulted in a highly interdisciplinary community
between Humanities and Sciences, and we hope to see a continuation of this throughout the next years.

We would like to thank the local team in Thessaloniki, all students and administrative staff who helped us. We
would like to thank Emmanouil Benetos for the keynote talk that built bridges to the AAWM community. We
would like to thank the musicians who created a great atmosphere during the evenings. And, last but not least,
all participants and reviewers who support the FMA.

Thessaloniki, September 2018.

The organizers
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Keynote

Speaker: Emmanouil Benetos
Title: Automatic transcription of world music collections

Emmanouil Benetos is Lecturer and Royal Academy of Engineering Research Fellow at the Centre for Dig-
ital Music, Queen Mary University of London (QMUL). He holds a BSc and MSc in Informatics from the
Aristotle University of Thessaloniki. After receiving his PhD in Electronic Engineering at QMUL (2012), he
joined City, University of London as University Research Fellow (2013-14). His research interests include
signal processing and machine learning methods for audio analysis, as well as applications of these methods to
music information retrieval, environmental sound analysis, and computational musicology, having authored/co-
authored over 80 papers in the aforementioned fields. His ongoing research on automatic music transcription
has been highly cited and he was author of top ranking software on the same topic (MIREX 2013, 2015).

Website:http://www.eecs.qmul.ac.uk/∼emmanouilb/

Abstract
Automatic music transcription refers to the process of converting a music recording into some form of human-
or machine-readable music notation. It is considered to be a fundamental problem in the field of music infor-
mation retrieval, with several potential uses in the fields of digital musicology and ethnomusicology. However,
it still remains an open problem, especially in the context of polyphonic and heterophonic music. Another
challenge facing automatic music transcription methods and music informatics methods in general is the so-
called "Western bias": most such computational methods are not directly applicable to music styles outside
the purview of Western/Eurogenetic Music. In this talk I will first present the state-of-the art on automatic
music transcription, with a focus on world, traditional and folk music. I will illustrate it with our own research
on automatic music transcription for specific music styles, including Turkish makam music and Cretan dance
tunes. I will describe the challenges regarding modelling, evaluation and adoption of such tools, and on ongo-
ing efforts towards pitch and tuning analysis on a large corpus of audio recordings from the British Library’s
World & Traditional Music collections. In the final part of the talk I will outline future directions in the inter-
section between computational ethnomusicology and music information retrieval, and on ways of carrying out
mutually beneficial research between the two communities.

1
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PLAYER RECOGNITION FOR TRADITIONAL IRISH FLUTE
RECORDINGS

Islah Ali-MacLachlan, Carl Southall, Maciej Tomczak, Jason Hockman
DMT Lab, Birmingham City University

islah.ali-maclachlan, carl.southall, maciej.tomczak, jason.hockman
@bcu.ac.uk

ABSTRACT

Irish traditional music (ITM) is a form of folk music that de-
veloped alongside dancing over hundreds of years to become an
integral part of Irish culture. The wooden flute is widely played
in this tradition and mastery in performance is judged by per-
sonal stylistic interpretation. Automatic player recognition al-
lows for musicological analysis in an environment where players
are individuated based on their interpretation of a common set
of melodies. This paper presents two player recognition meth-
ods based on convolutional neural networks (CNN). We imple-
ment two evaluation contexts for both methods, using a new ITM-
Flute-Style6 dataset alongside our existing ITM-Flute-79 dataset.
The results demonstrate that in both simplified and realistic sce-
narios, the proposed system is capable of high performance in
recognising individual musicians playing melodies with individ-
ual stylistic traits that are idiomatic of the genre.

1. INTRODUCTION

Irish traditional music (ITM) is a solo and collective instru-
mental tradition with roots in social dance music (Vallely,
2011). Playing of the wooden simple system flute in ITM
was historically linked to the west and northwest of Ireland
(Williams, 2010) and traditional flute players are individ-
uated based on their use of techniques such as ornamenta-
tion, phrasing and articulation (McCullough, 1977; Larsen,
2003; Hast & Scott, 2004; Keegan, 2010) alongside id-
iosyncratic timbral differences (Widholm et al., 2001; Ali-
MacLachlan et al., 2013, 2015).

1.1 Related work

Musical genre classification is a widely studied area of mu-
sic information retrieval (Fu et al., 2011) and an overview,
including state of the art techniques, is presented by Sturm
(2013). A subset of this field is musician recognition in-
volving the definition of timbral, rhythmic and pitch con-
tent. Studies in flute acoustics have found that individual
players produce markedly different timbres while changes
in manufacturing material make very small spectral dif-
ferences (Backus, 1964; Coltman, 1971; Widholm et al.,
2001). Previous methods of player detection in ITM have
used signal processing methods (Ali-MacLachlan et al.,
2013, 2015).

Convolutional neural networks (CNN) have been suc-
cessfully applied not only to image processing, but also
to various audio analysis tasks, where the assumption is
that auditory events can be recognised by analysing their

time-frequency representations. To this end, CNNs pro-
vide multiple advantages to the task of musician recogni-
tion that other neural network models constitute imprac-
tical. The first benefit lies in the shared weights over the
input that enable CNNs to process a greater number of fea-
tures at a lower computational cost. This is achieved by
applying the same function (filter) on sub-regions of the
input images (spectrograms). This convolution operation
is capable of feature translation that preserves the spatial
information of the input, and can be used to learn musi-
cal features where the target musician’s events can appear
at any time or occupy any frequency range. CNNs have
been implemented successfully with input features derived
from spectrograms (Lee et al., 2009) and mel-frequency
cepstral coefficients (MFCCs) representing timbre, tempo
and key variations (Li et al., 2010). A CNN was trained to
perform artist and genre recognition on the Million Song
Dataset (Bertin-Mahieux et al., 2011) using segments re-
lated to note onsets and feature vectors containing timbre
and chroma components (Dieleman et al., 2011). Lidy &
Schindler (2016) used CNN to classify genre, mood and
composer and achieved the highest results in MIREX 2016
using a 40-band Mel filter. Costa et al. (2017) reinforced
the effectiveness of CNNs for music genre classification,
performing analysis on three genres: Western, Latin and
African music. Individual instrument classification is dis-
cussed in Park & Lee (2015) and as part of an ensemble in
Han et al. (2017).

1.2 Motivation

In order to determine stylistic differences between players,
we must first develop methods to recognise different play-
ers in audio signals. Earlier studies in player recognition
for flute in ITM have relied upon existing collections of
recordings where musicians do not play the same pieces of
music (Ali-MacLachlan et al., 2015). We collect and eval-
uate recordings of six accomplished traditional flute play-
ers, all playing music from a predetermined corpus offer-
ing a range of typical modes and rhythms.

The use of deep learning, in particular CNN, is an im-
portant step in more accurate player identification. In order
to identify flute players in ITM, we propose a CNN system
in order to make use of their ability to efficiently process
large datasets.

The remainder of this paper is structured as follows:

3



Section 2 details CNNs and their implementation. In Sec-
tion 3 we discuss the evaluation strategies and the datasets
used. Results of the studies into player recognition are
presented in Section 4 and finally conclusions and further
work are discussed in Section 5.

2. METHOD

We utilise a deep learning model to classify musician-
specific features for the task of player recognition. More
concretely, first the audio waveforms are pre-processed to
create a desired signal representation in a form of MFCCs.
Then the signal is split into 5-second segments that repre-
sent different timbral and rhythmic characteristics of each
performer. Given these characteristics, our model aims to
recognise the player of previously unseen audio segments.
The next subsections discuss the single blocks of the sys-
tem in more detail.

2.1 Feature Extraction

First, a downsampled 22.05 kHz 16-bit mono audio sig-
nal is split into five second segments. These audio seg-
ments offer enough information to capture rhythm patterns
as well as result in a large number of observations. A mag-
nitude spectrogram is then calculated using a 1024-sample
window size and a resulting frame rate of 100 Hz. Finally,
the frequency bins are transformed into 40 MFCCs in a
frequency range from 32 Hz to 4,000 Hz.

2.2 Convolutional Neural Network

Figure 1 gives an overview of the implemented CNN archi-
tecture. The convolutional layers are constructed using two
different building blocks that process the input features:
Block A consists of a layer with 10 5x5 filters with 1x5
stride lengths and block B consists of a layer with 20 5x5
filters with 1x1 stride lengths; both are followed by max
pooling ((2x2) and (2x5)), dropout layers (Srivastava et al.,
2014) and batch normalisation (Ioffe & Szegedy, 2015). A
fully connected layer with 100 neurons and a softmax out-
put layer of size c (number of player classes) follows the
convolutional blocks. This results in roughly 200,000 total
parameters with slight variations depending on c.

2.3 Training

The Adam optimiser is used with a learning rate of 0.003 to
train the model. Stochastic gradient descent is performed
(batch size = 250) with the cross entropy loss function.
Training is stopped when two criteria have been met: 1)
50 epochs have commenced and 2) validation set loss has
not increased between epochs. The weights are initialised
using a scaled uniform distribution (Sussillo, 2014) and bi-
ases are initialised to zero.

3. EVALUATION

Our proposed method of player recognition relies on the
accuracy of recordings in representing the playing style of
each musician. We implement four evaluation strategies,

Figure 1: Overview of the proposed CNN. The input data
flows between different network layers from left to right.
The input data size at each computational block is pre-
sented above each layer.

utilising 5-second audio segments from recordings to as-
sess the ability of the proposed system to recognise differ-
ent players.

3.1 Datasets

For the purposes of our evaluation we introduce a new
ITM-Flute-Style6 dataset and include a part of a previ-
ously used ITM-Flute-99 dataset (Köküer et al., 2014;
Ali-MacLachlan et al., 2015; Jančovič et al., 2015; Ali-
MacLachlan et al., 2016, 2017).

3.1.1 ITM-Flute-Style6

The new dataset consists of 28 recordings by each of 6
players (168 total) and is freely available on Github. 1 All
tracks include only flute recordings with no accompani-
ment. The set covers a range of melodies or tunes that are
common in the ITM community. The average duration of
all tracks is approximately 43 seconds. The total duration
of the dataset is 2 hours.

This dataset differs from the existing ITM flute datasets
in that it targets multiple player traits and playing contexts
that can substantiate further player style research. The
presented tune types (i.e., reels, jigs and hornpipes) cor-
respond to an informal online survey conducted among a
group of experienced ITM players. The tune names can
be seen in Table 1, where the last two represent individ-
ually chosen wild tracks by each player. The tune type
category covers the three most popular tune types in ITM.
Five categories are used to structure the dataset by: 1)
player, 2) tune name, 3) tune type, 4) timed (i.e., played
to metronome) and 5) first or second repeat. All recorded
flute players have substantial experience in playing and
performing in the style of ITM. The timing category seg-
regates the tracks into timed using a metronome, and un-
timed. All melodies were recorded twice in segue (first and
second repeat) with and without metronome except wild
tracks, which were only recorded without metronome.

The recordings were collected as 16-bit/44.1kHz WAV
files using a Thomann MM-1 measurement microphone

1 https://github.com/izzymaclachlan/datasets
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(a) Simplified 2-class

(b) Realistic 2-class

(c) Simplified Multi-class

(d) Realistic Multi-class

Figure 2: Four evaluation strategies consisting of
two player recognition approaches (2-class and
Multi-class) and two contexts (Simplified and
Realistic).

No. Tune Title Type Scale Ends
on

1 Maids of Mount Cisco Reel G Ray
2 The Banshee Reel G Soh
3 Cooley’s Reel Reel G Lah
4 Banish Misfortune Jig G Doh
5 Morrison’s Jig Jig D Ray
6 The Home Ruler Hornpipe D Doh
7 Players choice 1 Wild n/a n/a
8 Players choice 2 Wild n/a n/a

Table 1: Corpus recorded by all players detailing tune
type, scale and ending note.

connected to an Audient ID14 audio interface. The mi-
crophone was positioned above the middle of the flute in
order to minimise wind noise caused by blowing.

3.1.2 ITM-Flute-99

ITM-Flute-99, includes 79 released recordings of 9 pro-
fessional players detailed in Ali-MacLachlan et al. (2016).
The remaining 20 recordings belong to a set of tutorial files
by Larsen (2003) and were discarded due to the recordings
being developed for teaching purposes rather than a true
representation of the player. In our evaluation we treat the
ITM-Flute-99, from now referred to as ITM-Flute-79, as
representative of professionally played and recorded ITM
flute performances.

3.1.3 Dataset experimental setup

The audio segments, described in section 2.1, are used to
evaluate our player recognition accuracy. There are a total

Player 1 Player 2 Player 3 Player 4 Player 5 Player 6 Mean
97

98

99

100

A
cc

ur
ac

y 
%

2-class Accuracies

Simplified Realistic

Figure 3: The 2-class individual and mean player accu-
racies for both Simplified and Realistic contexts.

of 1885 segments comprising of 1438 from the ITM-Flute-
Style6 and 447 from ITM-Flute-79.

3.2 Evaluation Strategies

We implement four different evaluation strategies, con-
sisting of two player recognition approaches (2-class
and Multi-class) and two contexts (Simplified and
Realistic) to test the system performance. An overview
of the strategies is given in Figure 2. It is expected that
the Realistic context will return lower accuracies as the
larger dataset is representative of a wider range of player
styles.

3.2.1 Simplified 2-class

In the first evaluation strategy, termed Simplified

2-class we use a 2-class approach (using a softmax
output layer with 2 neurons, c=2) to identify a single
player from a mixed corpus. The first class (1) corresponds
to the observed player and the second class (0) represents
all other players. Due to there being only 6 players, the dif-
ference in total class observations should not cause signifi-
cant bias during training. We test the 2-class approach in
a Simplified case using just the 6 player data from ITM-
Flute-Style6. All recording variations of six tracks are used
for training and all recording variations of the other two
tracks are split evenly into validation and test sets. Four
fold cross validation is performed so that each track ap-
pears in the test set. This is repeated 6 times with the player
class corresponding to a different player each time.

Pred
P O

G
T P 99.7 0.6

O 0.3 99.4

Pred
P O

G
T P 97.5 0.8

O 2.5 99.2

Table 2: 2-class confusion matrices where Pred is the
predicted class, GT is the ground truth class, P is the player
class and O the other class. The Simplified context is on
the left and the Realistic context is on the right.

3.2.2 Realistic 2-class

In the second evaluation strategy, termed Realistic

2-class, we use the same 2-class approach as Section

5



1 2
M 99.7 100
N 100 100

1 2
M 95.0 96.7
N 97.3 98.8

Table 3: 2-class subgroup accuracies where M is
metronome, N is no metronome, 1 is first repeat and 2 is
second repeat. The Simplified context is on the left and
the Realistic context is on the right.

Track 1 Track 2 Track 3 Track 4 Track 5 Track 6 Track 7 Track 8 Reel Jig Hornpipe Wild

94

95

96

97

98

99

A
cc

ur
ac

y 
%

2-class Track Accuracies

Simplified Realistic

Figure 4: 2-class results per track and the mean for the
different track types. The Simplified context is on the
left and the Realistic context is on the right.

3.2.1 but include ITM-Flute-79 to create a more realistic
evaluation. We expect that the inclusion of the additional
data will reduce performance. All tracks from the added
dataset are labelled as the other player class (0) and the
dataset is divided by track into training, validation and test-
ing respectively 75%, 12.5% and 12.5%.

3.2.3 Simplified Multi-class

In the third evaluation strategy, termed Simplified

Multi-class, we aim to be able to classify an audio seg-
ment as one of multiple players. To do this a separate
class is used for each of the 6 players (1,2,3,4,5,6) using
a softmax output layer with 6 neurons (c=6). We then
test the Multi-class approach using the same evaluation
methodology as the Simplified context used in Section
3.2.1.

3.2.4 Realistic Multi-class

In the final evaluation strategy, termed Realistic

Multi-class we test the Multi-class approach in a
more realistic situation using the same two datasets and
evaluation methodology from Section 3.2.2. However, all
of audio segments from ITM-Flute-79 are given their own
new label (7).

4. RESULTS AND DISCUSSION

4.1 2-class

Figure 3 presents the results of each player and the mean
across players for both 2-class evaluation strategies (Fig-
ure 2(a) and 2(b)). As expected, a higher mean player
accuracy is achieved in the Simplified context than the
Realistic context. Player 5 achieves the lowest classi-
fication accuracy whereas player 6 achieves the highest.
This could be due to player 6 having a much harder tone

and higher harmonic energies whereas player 5 has a softer
tone similar to the other four players.

A confusion matrix for the mean player results of the
two 2-class contexts are presented in Table 2. For the
Simplified context (Figure 2(a)) there is approximately
the same amount of misclassified player segments as there
are misclassified other player segments. In the Realistic
context there is a significantly higher amount of misclas-
sified player segments and the greatest decrease in perfor-
mance occurs for player 1 and player 2 (Figure 3), because
these players show less individual stylistic traits like use of
ornamentation or changes in timbre.

Table 3 presents the 2-class dataset category distri-
butions of correctly classified audio segments. For both
contexts, first repeat with metronome (top left) achieves
the lowest accuracy and second repeat without metronome
(bottom right) achieves the highest accuracy. This makes
sense as an artist is generally more reserved when they are
trying to stay in time with a metronome or are playing a
melody for the first time.

Figure 4 presents the percentages of the correctly clas-
sified player segments (same as Table 3) for each of the
tracks. Also presented are the mean accuracies for the track
types (Figure 4). The highest accuracies are achieved on
the wild tracks. This could be due to the fact that the wild
tracks are chosen by the players and suit their preferred
playing technique. The lowest accuracies were achieved
in the Jig and Hornpipe tracks (Tracks 4, 5 and 6) and
they also see the largest decrease in accuracy between the
Simplified and Realistic contexts. Reels are the most
common tunes in ITM. As jigs and hornpipes are less com-
mon, musicians may be less comfortable playing this type
of melody.

4.2 Multi-class

Table 4 presents confusion matrices for the Multi-class
evaluation strategies. Again, as expected, a higher mean
accuracy is achieved in the Simplified context than
the Realistic context with 99.6% and 96.6% achieved
respectively. While both approaches achieve a similar
accuracy in the Simplified context the Multi-class

approach achieves a lower accuracy than the 2-class

approach in the Realistic context. In order to recognise
the work of a single player, the 2-class approach is
more accurate. As in the 2-class evaluations, the highest
overall accuracy is achieved when recognising player 6
and the lowest when recognising player 1. This is likely
due to player 6 having a more individual style. The
majority of the errors within the Realistic context are
misclassified other players. Again, the few examples
that are misclassified are of players with similar playing
characteristics like timbre and amount of ornamentation.

In this study high accuracies are achieved suggesting
that individual players can be recognised using spectral
features, however the data consists of only a small
number of flute players. It is expected that extending the
ITM-Flute-Style6 dataset would result in lower accuracies

6



Prediction
1 2 3 4 5 6

G
ro

un
d

Tr
ut

h 1 98.8 0 0 0 0 0
2 0 100 0 0 0 0
3 0 0 100 0 0.6 0
4 0 0 0 100 0.9 0
5 1.2 0 0 0 98.5 0
6 0 0 0 0 0 100

Prediction
1 2 3 4 5 6 O

G
ro

un
d

Tr
ut

h

1 96 0.8 0 1.7 0 0 0
2 0.7 97.8 0 0 0 0 0.8
3 0.8 0 97.9 0 0.6 0 3.4
4 0 0 0 98.3 0 0 2.3
5 2.5 0 2.1 0 98.8 0 0.4
6 0 0 0 0 0 100 1.3
O 0 1.4 0 0 0.6 0 91.8

Table 4: Multi-class confusion matrices. Simplified context is on the left and the Realistic context is on the right.

as new players would be similar to those represented by
existing recordings.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a flute player recogni-
tion method using a CNN trained on five-second solo ex-
cerpts. We evaluated the method using four strategies con-
sisting of two approaches (2-class and Multi-class)
and two contexts (Simplified and Realistic). For sin-
gle player recognition, results from the evaluation show
that the 2-class method is more efficient. A player can
be more easily recognised in second repeats and when not
playing to a metronome. This suggests that players are less
characteristic and more self-restricting when they play a
tune for the first time or to a metronome. The highest accu-
racies are achieved when musicians play their own choice
of melody (i.e., wild tracks).

In future research, we aim to develop single note and
ornament classification methods with additional features.
We also aim to gain a deeper understanding of how the
network is differentiating between stylistic features. We
plan to implement other neural network architectures in
order to compare the accuracy of different methods. In
order to determine whether accuracies decrease with the
addition of other players, we plan to extend the ITM-Flute-
Style6 dataset by recording additional flute players. We
will follow the same methodology to record other tradi-
tional Irish instruments in order to compare stylistic traits
across a range of instruments.
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ABSTRACT

A new method is proposed to infer rhythmic information from
audio recordings of Irish traditional tunes. The method relies on
the repetitive nature of this musical genre. Low-level spectral
features and autocorrelation are used to obtain a low-dimensional
representation, on which logistic regression models are trained.
Two experiments are conducted to predict rhythmic information
at different levels of precision. The method is tested on a collec-
tion of session recordings, and high accuracy scores are reported.

1. INTRODUCTION

Our goal is to automatically extract rhythmic information
from an audio recording of Irish traditional music (ITM).
The large majority of the repertoire can be categorized in
a small number of tune types, often related to dance forms
(Vallely, 2011). Metres used are:

• simple duple: 4
4 (reel, hornpipe, fling, barndance)

and 2
4 (polka)

• simple triple: 3
4 (waltz, mazurka)

• compound duple: 6
8 (jigs) and 12

8 (slides)

• compound triple: 9
8 (slip jigs)

Simple and compound refer to the beat subdivision, du-
ple and triple refer to the grouping of beats. No assymetric
metres such as 5

8 or 7
8 are found in this musical tradition.

Rather than focusing on the metre, we are interested in the
tune type. Indeed, inferring a 4

4 metre would not allow us to
differentiate between a reel and a hornpipe, although their
rhythm is noticeably different, the latter being interpreted
with a clear swing. Melodies in ITM have a lot of repe-
tition, and the majority of the notes have the duration of
a quaver. This rhythmic stability makes it possible to ex-
tract useful information locally, from short excerpts. Slight
tempo deviations can occur in live performances, and the
use of a short sliding window will allow us to accomodate
for these.

The method we introduce in this article first computes
an onset detection function, then uses autocorrelation to
extract its periodicity. No prior knowledge such as beat lo-
cation or tempo is required. Rather than relying on hand-
crafted decision criteria or predefined templates reflecting
musical knowledge, we will use a statistical approach to
learn decision functions from a novel representation sum-
marizing the autocorrelation function (ACF). As a first step
in this study, we will attempt to predict the beat subdivision

(simple or compound). Then, the same method will be used
to predict the tune type of an audio recording.

In Section 2 we present some related work on rhythm
inference, not restricted to ITM. We introduce the dataset
of recordings used in this study in Section 3. Then we
present in Section 4 our proposed method. Results are re-
ported and discussed in Section 5. Section 6 contains clos-
ing remarks and ideas for future work.

2. RELATED WORK

Brown (1993) is an early example of using autocorrelation
to determine the metre of a piece of music from its score.
Decision criteria on the ACF are explicitly defined. Also
focusing on symbolic music, Toiviainen & Eerola (2006)
use discriminant function analysis to predict the metre of
folk tunes. Two experiments are conducted, first to distin-
guish duple and triple metre, then the actual time signature.
As stated in Section 1, our first experiment concerns the
distinction of simple vs. compound metre instead. Indeed
for the musical genre considered here, it is more natural to
keep jigs and slip jigs (both compound) in a same category
than e.g. jigs and polkas (both duple).

Pikrakis et al. (2004) and Fouloulis et al. (2013) deter-
mine the metre of Greek traditional music recordings, in-
cluding assymetric metres, by hand-crafted decision crite-
ria or template matching on the auto similarity matrix.

In Coyle & Gainza (2007), the time signature is also de-
tected using self-similarity matrix, but the method is based
on a prior knowledge of the tempo. The method presented
in Gouyon & Herrera (2003) relies on beats extracted in
a semiautomatic manner, and uses hand-crafted decision
criteria to infer the metre. Gainza (2009) and Varewyck
et al. (2013) first extract the beats from the raw audio, then
determine the metre by analysing inter-beat similarity.

3. DATASET

We will use as our dataset for this study the collection of
recordings accompanying the Foinn Seisiún books pub-
lished by the Comhaltas Ceoltóirı́ Éireann organisation.
They offer good quality, homogeneous examples of the
heterophony inherent to an Irish traditional music session,
although some solo recordings are also present. Instru-
ments in the recordings include flute, tin whistle, uillean
pipes (Irish bagpipes), accordion, concertina, banjo, piano,
guitar, bodhran (drum). The whole collection consists of 3
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CDs, representing 326 unique recordings. The first 2 CDs
(273 tunes) are available under a Creative Commons Li-
cence, while the third is commercially available.

We label each recording by the type of tune played. In
most cases the type can be easily identified, but two notable
exceptions need mentioning: Fanny Power was written as a
jig by Turlough O’Carolan ; Brian Boru’s march is written
as a 6

8 march. However, in the recordings they are arguably
played as waltzes, and we decide to label them as such.
Two songs are present, both with a duple simple metre.
The distribution of tunes per tune type is given in Table 1,
as well as the beat subdivision of the metre.

Type number of tunes beat subdivision
reel 139 simple
jig 104 compound
polka 28 simple
hornpipe 18 simple
slide 14 compound
barndance 6 simple
waltz 5 simple
mazurka 4 simple
slip jig 3 compound
fling 3 simple
song 2 simple

205 simple
121 compound

Table 1: Distribution of tunes per type

4. METHOD

We now give the details of our proposed approach. First we
explain how the audio files are processed to obtain quan-
tized lag vectors, then how we train a logistic regression
model to infer rhythm features from these vectors.

4.1 Audio processing

The audio files we consider are sampled at 44100Hz. A
magnitude spectrogram is generated, with window size of
2048 and step size of 10ms, or 441 samples. This spec-
togram is then filtered through a filter bank of triangular
filters centered at Bark frequencies, resulting in a Bark
spectrogram Xk(t) where 1 ≤ k ≤ 24 is the Bark index.
Following Bello et al. (2005), we obtain an onset detection
function by a method of spectral difference:

SD(t) =

24∑

k=1

(H(Xk(t)−Xk(t− 1)))2 for t > 0

where the rectifier H(x) = (x + |x|)/2 has the effect of
ignoring decreases of energy, because it is equal to zero
for negative values. Thus it emphasises onsets more than
offsets. As the energy difference is computed in each spec-
tral band before being summed, the presence of percussive
instruments is not required to detect onsets.

The autocorrelation functions is then computed on a 5s
window of the SD function (wt) = (SD(t0+t))0≤t<N=500
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Figure 1: Peak picking of the ACF function. Solid line:
ACF function. Dashed line: smoothed function
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Figure 2: Quantized lag vector

(where t0 is the start of the window) using Pearson corre-
lation coefficient. The autocorrelation for a lag l is:

ACF(l) =
cov(X,Y )

σXσY
where

{
X = (wt)0≤t<N−l
Y = (wt)l≤t<N

where cov is the covariance and σ designates standard de-
viation. We smooth this function by Gaussian filtering with
a standard deviation of 20ms, and find the local maxima of
this smoothed curve, ignoring the always present peak at
l = 0. Figure 1 shows and example of the peak picking
procedure on a window of a jig. Each peak p has a lag and
a value, represented by pl and pv respectively. For the goal
of this study, what matters is not the actual locations of the
peaks pl, but their relative positions from each other. By
abstracting our representation from the actual lag values,
we will obtain a form of tempo invariance. The quaver du-
ration will be extracted from the peaks locations and then
used to compute a quantized representation.

The quaver duration q is determined by the fuzzy his-
togram algorithm, introduced in Duggan (2009), and given
in Algorithm 1. The intervals, or lag differences, between
the peaks are grouped into bins, allowing for a deviation of
a fraction of the bin center, set to 1/3. The centers of the
bins are adjusted for each new interval added. The quaver
length is taken as the center of the largest bin.

Knowing the quaver length will now allow us to obtain
a tempo-invariant representation of the peaks of the ACF.
The following step involves summing peak values.
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Data: P , list of peaks of the ACF (size l)
Result: quaver length
bins← {};
max← 0;
for i← 1 to l do

if i = 1 then
dur = P [i]l;

else
dur = P [i]l − P [i− 1]l;

end
found← false;
for b in bins do

bin start← b.center∗(1− 1/3);
bin end← b.center∗(1 + 1/3);
if dur ≥ bin start and dur ≤ bin end then

found← true;
b.center
← (b.center∗b.count+dur)/(b.count+1);

b.count += 1;
break;

end
end
if found = false then

newBin.center← dur;
newBin.count← 1;
bins.add(newBin);

end
end
for b in bins do

if b.count > max then
maxBin← b;
max← b.count;

end
end
return maxBin.center;

Algorithm 1: Fuzzy histogram algorithm, adapted
from (Duggan, 2009)

We now introduce the quantized lag vector (qli)1≤i≤16 1

obtained by first grouping the peaks as:

Pi = {p ∈ P where round(pl/q) = i}

and averaging across these sets:

qli =

{(∑
p∈Pi

pv

)
/|Pi| if Pi 6= ∅

0 otherwise

An example of such a vector is plotted in Figure 2, com-
puted from the ACF peaks shown of Figure 1. The ratio of
the first nine peaks is preserved, but the absolute durations
of the lags have been discarded, making this representa-
tion tempo-invariant. Some of the subsequent peaks are
grouped together by the rounding operations. More promi-
nent peaks appear at multiples of 3, as is to be expected
from the compound metre of that tune type (jig).

Each 5s window produces a 16 valued vector, and we
slide the window with a step size of 0.5s. Choosing such
a small step size results in a large amount of examples,
which is an advantage for the machine learning methodol-
ogy we present in the next section.

1 The number of 16 quavers was chosen empirically. Experiments with
alternative values did not lead to significantly different results.

4.2 Model training

Regression analysis in general attempts at modelling the
relationship between independent variables x (here the ql
vectors) and a dependent variable y (here the rhythm infor-
mation). We will use logistic regression models, or classi-
fiers, because our dependent variables are categorical, i.e.
they can only take one of a given set of values. A similar
methodology will be used to predict, in a first experiment,
the beat subdivision and, in a second one, the tune type.

4.2.1 Experiment A: beat subdivision prediction

The dataset consists of pairs (x, y), where x is a ql vector
and y a label in {simple, compound}. We use 10-fold cross
validation as a way to evaluate how well the models gener-
alize (Kelleher et al., 2015). Each fold is, in turn, kept as a
test set, and a binary classifier is trained on the remaining
9. When preparing the folds, we make sure to keep all ql
vectors from one tune in only one of the folds. This way,
the models will be tested on recordings that have not been
used during training, thus avoiding a form of cheating.

To account for the fact that the classes simple and com-
pound are not balanced in the dataset, during training the
error on an instance is weighted by the inverse of the rel-
ative frequency of the output class of the instance in the
training set; i.e., errors on compound instances are given
a higher weighting than errors on simple instances in the
calculation of the loss function to account for the fact that
compound instances are less frequent.

4.2.2 Experiment B: tune type prediction

In this second experiment, we attempt to predict the tune
type from the ql vector. Because some tune types are too
rare in the dataset, we limit ourselves to the 5 types at the
top of Table 1, namely reel, jig, polka, hornpipe and slide.
There are only 14 slides in the collection, hence using 10-
fold cross validation would only result in one or two of
them in each fold. To avoid this problem, we use 4-fold
validation instead. For each fold, a multinomial logistic
regression classifier is trained in a one-versus-all manner,
meaning that the model actually consists of a set of binary
classifiers. As in experiment A, during the training phase,
errors are weighted by the inverse of the relative frequency
of the output class.

5. RESULTS AND DISCUSSION

We now report the results of our 2 experiments. Accuracy
scores are given for aggregate matrices resulting from the
k-fold cross validation methodlogy described above.

The models of both experiments predict a label for a 5s
window. In addition to the window-level scores, we are
also interested in predictions across a span of several con-
secutive windows. The reason we are interested in this is
that rhythm is not as easily identifiable on all 5s sections
of a tune. Thus we hope to reach better accuracy by gath-
ering predictions on a longer segment. The prediction over
a span of s windows is simply defined as the most frequent
of the s predictions. We report performances at window-
level, across s windows, and finally over whole tunes.
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simple compound
simple 26910 1105
compound 2292 15515
overall (%) 92.2 93.4

Table 2: Aggregate confusion matrix at window-level for
experiment A (column: reference, line: prediction)

Type Accuracy (%)
reel 96.5
jig 95.1
polka 88.6
hornpipe 86.5
slide 79.1
barndance 93.4
waltz 65.4
mazurka 68.2
slip jig 99.2
fling 85.0
song 96.1

Table 3: Window-level accuracy score per tune type for
experiment A

5.1 Experiment A

The aggregate confusion matrix resulting from the 10-fold
cross validation is given on Table 2. The overall accuracy
score at the 5s window level is 92.6%. The prediction ac-
curacy is slightly lower on the simple class than on the
compound class. A possible explanation for this is that
there are more distinct tune types included in the simple
class (reel, hornpipe, polka, waltz,...) than in the com-
pound class (only jig, slip jig and slide), as can be seen
on Table 1. Looking at the score per tune type on Table
3, we see that it is particularly low for waltz and mazurka,
both in simple triple metre 3

4. Mazurkas are also interpreted
with a noticeable swing.

When considering spans of successive overlapping win-
dows, the accuracy increases up to 99.3%, as is shown on
Figure 3. We can only compute this up to a span size of
87 windows, corresponding to the duration of the shortest
tune in the collection.

Lastly, for each tune, we consider the prediction over
the span of all windows of its recording. At this tune-level,
the prediction only fails on 3 tunes, all of type slide. The
overall prediction accuracy is of 99.1%.

Although the task tackled in this first experiment is ar-
guably easy, these near-perfect scores are very encouraging
and suggest that our ql vector representation does capture
some useful rhythmic information.

5.2 Experiment B

The aggregate confusion matrix resulting from the 4-fold
cross validation is given on Table 4, and the overall accu-
racy score at the 5s window level is 82.7%. The accuracy
per window span length is shown on Figure 4, and reaches
a maximum of 92.9% at s = 87.
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Figure 3: Prediction accuracy by span length for experi-
ment A

reel jig polka hornpipe slide
reel 16421 406 617 135 82
jig 296 12577 90 239 1087
polka 339 207 2602 209 200
hornpipe 920 120 198 2537 106
slide 614 1058 115 188 408
overall (%) 88.3 87.5 71.8 76.7 21.7

Table 4: Aggregate confusion matrix at window-level for
experiment B (column: reference, line: prediction)

Finally, the confusion matrix for tune-level prediction is
given in Table 5. The overall score on slides is low, which
is in line with the observation made on tune-level predic-
tions for experiment A. Most of the slides are misclassified
as jigs. Both are in duple compound metres, which sug-
gests that the model did manage to capture relevant fea-
tures, but could not make a good enough distinction be-
tween these two tune types. However all 18 hornpipes in
the dataset have been correctly classified, despite sharing
the 4

4 time signature with reels. Our method manages to
distinguish two tune types having distinct “rhythm signa-
tures” but the same metre.
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Figure 4: Prediction accuracy by span length for experi-
ment B
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reel jig polka hornpipe slide
reel 137 0 3 0 0
jig 1 104 0 0 9
polka 0 0 25 0 2
hornpipe 1 0 0 18 0
slide 0 0 0 0 3
overall (%) 98.6 100 89.3 100 21.4

Table 5: Aggregate confusion matrix at tune-level for ex-
periment B (column: reference, line: prediction)

6. CONCLUSION

We introduced a new method for inferring rhythm informa-
tion from an audio recording, using low-level spectral fea-
tures and logistic regression classifiers. The performance
on the dataset was very good, or even perfect, for some
types of tunes (jigs, hornpipes). Other tune types proved to
be more challenging (slides), while others were too rare in
our collection to be considered.

In future work, we hope to be able to predict more tune
types. In order to do so, a larger collection of recordings
will have to be used, so more examples can be used to train
our models. Testing our models on solo recordings would
be useful to further assess the robustness of our proposed
approach. Indeed, although our onset detection function
relies on spectral content and not on hard onsets from per-
cussive instruments, drums or plucked string instruments
(guitar, banjo) are present in most of the recordings in our
dataset. Applying our method to flute or fiddle solo record-
ings could establish to what extent hard onsets help the
rhythm inference.
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ABSTRACT 

This paper discusses ethical principles in the preservation of 
our increasingly digital musical cultural heritage, particularly in 
the context of the impact of information and communication 
technologies. UNESCO’s Information for All Programme has re-
cently drawn attention to the digitisation of intangible cultural 
heritage as a primary safeguarding measure. This paper will fo-
cus on the unfolding ethical issues concerning digitisation poli-
cies, such as the likely excessive reliance on information and 
communication technologies, the ethics of the decision-making 
powers regarding the selection of what musical heritage is worth 
keeping, the vulnerability of digital depositories, and future eth-
ics-oriented paths. 

 
Keywords: intangible cultural heritage; information ethics; 

archiving; data storage 

1. DIGITISATION POLICIES  

Modes of music production, transmission, and preser-
vation are in a constant state of reshaping in a world where 
music has been increasingly being mediated by technol-
ogy. In particular, information and communication tech-
nologies (ICTs) play a crucial role in this mediation as far 
as our musical intangible heritage is concerned, encourag-
ing new approaches that bring ethical issues to the fore-
ground.  

Information ethics and information preservation were 
listed as priorities in UNESCO’s Information for All Pro-
gramme (IFAP) (UNESCO, 2017) with great emphasis on: 

 
1. fighting the ‘digital divide’ through universal ac-

cess to information and to ICTs; 
2. safeguarding measures usually involving digiti-

sation of intangible cultural heritage (ICH); 
3. making the internet a safe place for its users.1  

 
Information ethics, as proposed by Luciano Floridi, is 

the radical assumption that existence has moral intrinsic 

                                                        
1  Other ‘information curation’ initiatives besides UNESCO’s 

IFAP include the National Digital Stewardship Alliance 
(NDSA) and the International Internet Preservation 
Consortium (IIPC). 

worth (Floridi, 2015). This is a non-biocentric approach 
that replaces life with being; it is not only about our bio-
sphere, but about our infosphere which is the whole onto-
logical kit and caboodle. In this context, any form of neg-
ative agency by destroying, corrupting, polluting, and de-
pleting informational objects can be treated as something 
more fundamental than suffering.2 This means that any-
thing capable of altering the integrity of information raises 
questions about its moral implications.  

In spite of the fact that we are the moral agents of the 
infosphere, our understanding of the moral implications, as 
well as the nature, of something as intangible and funda-
mental as information is still in its infancy. Information so-
ciety as a whole expands in a pace exceedingly faster than 
the growth of our ethical comprehension of it. Neverthe-
less, the evolving consideration given to our ICH puts the 
integrity of our cultural memory at the centre of moral con-
cerns. Threats to ICH, as laid out by UNESCO’s Conven-
tion for the Safeguarding of the Intangible Cultural Herit-
age (UNESCO, 2003), are generally – and perhaps delib-
erately – vague, but we can sum up the described threats 
as including the following: 

 
• Turning traditional forms of art into commodi-

ties; 
• Contextual and structural distortion due to tour-

ism; 
• Social or environmental factors (for example, an 

economic crisis might impact the amount of time 
a community devotes to its musical practices 
while an environmental issue might impact the 
availability of materials used to make certain mu-
sical instruments); 

• Traditions fed back into a community as a simpli-
fied version due to cultural appropriation or lim-
ited notation/transcription procedures. 

 

2 Floridi suggests the use of the word ‘entropy’ to describe such 
‘impoverishment of reality’ (2010, p. 103), but with a 
completely different meaning than the one intended by 
Claude Shannon in his information theory, which is more 
akin to complexity, disorder, or unexpectedness.  
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Traditional music is a notable example of the fragility 
of cultural heritage. The occasional co-existence between 
traditional music and their commoditised counterpart 
might seemingly operate as a symbiotic relationship, in the 
sense that the actors of such traditions could benefit from 
an additional source of income. However, commercial 
pressures tend to promote radical changes of context or 
content to traditional manifestations, eventually leading 
them to miss an important piece of their identity. The ap-
parent inevitability of such changes encourages safeguard-
ing measures in the form of the digitisation of musical 
practices – digital audio/video recording, digitised sym-
bolic representations (MIDI files, notation, transcriptions), 
and databases. I will refer to these measures under the um-
brella name ‘digitisation policies’. 

  

1.1 From Intangible to Tangible (and Vice-Versa) 
We are currently experiencing an ontological shift. In 

order to preserve our intangible musical heritage, digitisa-
tion policies resulting in very tangible storage media (rang-
ing from vinyl records to hard drives) are considered to be 
a necessary measure to protect worthy information. Musi-
cal information becomes then accessible, portable, and 
replicable. The next shift is from a musically materialist 
reality where the tangibility of storage media is taken for 
granted, relying on physical objects to ensure storage and 
reproduction, to an informational one, which promotes the 
illusion that music is independent from a physical support 
in order to be archived and retrieved, in spite of the fact it 
is more technology-dependent3 than ever. This de-physi-
calizing shift is a core element of current music listening 
and sharing habits (Benvenuti, 2017), which are character-
ised by streaming digital music files and their inherent 
ability to be faithfully copied and accessed from anywhere, 
provided that some infrastructure requirements are met.  

Storage of data still depends on a physical support, 
whose most significant infrastructure is the one provided 
by data centres. The increasing need of physical space, en-
ergy, and maintenance for such infrastructure is of enor-
mous importance.  

2. ICT-DEPENDING SOCIETIES 

Only information societies are at risk of informational 
threats; the more they depend on ICTs, the higher the 
stakes when it comes to the nourishment and proper preser-
vation of information. Information ethics can be seen as a 
tripartite approach concerned with information as: 

 a resource which must be accurately accessible 
within moral limits. In terms of our ICH, this 
refers, for instance, to ensuring proper access 
to sound archives but restricting access to 
personal data when appropriate; 

                                                        
3  By ‘technology’ I specifically mean ICTs, not just any 

technology such as the modern piano or the ballpoint pen. 

a product, which is to be ethically created in order 
not to be characterised as plagiarism or ‘fake 
news’, for instance; 

a target subject to vandalism (by hacking, for ex-
ample), social control, and claims to freedom 
of expression. In terms of our ICH, this can 
refer, for instance, to filtering content by us-
ing (immorally acquired) data about a per-
son’s browsing behaviour in order to pro-
mote certain music genres or artists. It can 
also refer to the deliberate destruction of data 
by acts of state policy or terrorism, for exam-
ple.   

Therefore, since the informational shift has radically 
transformed the moral context in question, our relationship 
with technological mediation must be considered criti-
cally.  

 

2.1 Relying on ICTs: How Much Is Too Much? 
Particularly (but not only) in the state members of the 

G7 – Canada, France, Germany, Italy, Japan, the United 
Kingdom, and the United States of America – the Gross 
Domestic Product (GDP) is mostly comprised of intangi-
ble goods – information. In 2016, global expenditure on 
entertainment and media got a 2.54% share of the global 
GDP (see Figure 1) (“Global Entertainment and Media 
Outlook 2017-2021,” 2017), of which digital entertain-
ment and media comprise 33.9% (Floridi, 2016).4 The pro-
jected decrease in global expenditure, according to the re-
port, might be due to the increase in digital activities not 
actually traceable by its methodology. At any rate, this is 
a higher share than military expenditure in the same year 
(2016), which was 2.2% (US$ 1.69 trillion) of the global 
GDP. In the first half of 2017, 184.3 billion streams of on-
demand audio were logged in the United States alone 
(Nielsen Music, 2017).  

 

 
Figure 1 - Global Entertainment and Media Revenue as a 
Share of Global GDP. Source: Global entertainment and 
media outlook 2017−2021, PwC, Ovum 

 

4 Based on 2010 data. 
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Streaming is now the dominant revenue source for rec-
orded music. This impressive figure, which does not in-
clude music being played via other digital means (offline 
music files, CDs, DVDs), expresses the profound role of 
technology-mediated music in our daily lives. It is not sur-
prising that traditional art forms are not immune to the per-
vasive influence of ICTs in these information societies. 

As emphasized by UNESCO: 
 

Performances may also be researched, rec-
orded, documented, inventoried and archived. 
There are countless sound recordings in archives 
all around the world with many dating back over 
a century. These older recordings are threatened 
by deterioration and may be permanently lost un-
less digitized. The process of digitisation allows 
documents to be properly identified and invento-
ried (UNESCO, n.d.) 

 
This point is important because it assumes that digiti-

sation is free from deterioration and ‘entropy’. Digitisation 
is seen as a safe harbour for information worthy to be kept. 
Relying too much on digital storage for safeguarding our 
musical heritage might inadvertently promote some care-
lessness toward traditional music: once our musical herit-
age is deemed to be safe, we can (wrongly) come to the 
conclusion that the focus of our concerns could change to 
something else, neglecting the need to continuously ensure 
the viability of traditional art forms. However, as Floridi 
points out, ‘[t]he gradual informatization of artefacts and 
of whole (social) environments means that it is becoming 
difficult to understand what life was like in pre-digital 
times’ (2016, p. 43). By progressively digitising our musi-
cal heritage, we are faced with an ethical concern often in-
volving the ontological transformation from intangible 
(tradition) into tangible (storage): some traditional musical 
practices might eventually come to exist – albeit in a radi-
cally decontextualized, deconstructed way – solely on dig-
ital storage media. As we will see below, digital storage – 
notwithstanding its enormously convenient features – is an 
archiving method which is eminently unstable. 

 

2.2 The Ethics of Decision-Making 
As the infosphere grows, so grows the logical need to 

select between what to maintain and what to delete. This 
refers to the basic problem of information theory as a se-
lection problem: one must know what to accept or reject 
during communication (Benvenuti, 2010, p. 40) and, as it 
has been pointed out, preservation always involves choices 
of some objects over others which might eventually disap-
pear (Lundberg, 2015, p. 681). This calls for two questions 
with far-reaching ethical implications: 

 
1. Who has the decision-making powers to de-

cide what information, within the scope of our 

intangible musical heritage, is worth keeping 
and what is not? 

2. Who owns – and under which commercial cir-
cumstances, if any – the depositories of such 
information? 

 
Someone has to make decisions, and unlike the infor-

mation curation initiatives discussed above might suggest, 
political decision-making is carried out not by states but by 
individuals invested with such power. The ownership of 
data centres should, in turn, be given the same ethical con-
sideration. While their role in preserving information is 
bound to some contractual obligations, the fate of stored 
data in case of significant changes to the circumstances of 
their management – such as insolvency – is still uncharted 
territory. The ‘cloud’ in cloud computing, after all, is still 
simply somebody else’s computer. 

Research and historiography might be important moti-
vators in the preservation of cultural heritage, but this in 
itself does not prevent ideological agendas from preferring 
and selecting musical manifestations that are deemed more 
valuable over others. For example, it is reasonable to sup-
pose that considerable effort will have been spent in the 
preservation of  samba de roda, since it has been recog-
nised by UNESCO as Intangible Cultural Heritage of Hu-
manity. On the other hand, it is also reasonable to suppose 
that Rio de Janeiro’s funk carioca, an essentially urban 
Brazilian genre of electronic dance music not currently 
recognised by any information curation initiative, will not 
be given similar consideration, regardless of being a cul-
tural manifestation enjoying phenomenal popularity.  

 

2.3 Dependability of the Global ICT Infrastructure 
There is evidence that a strong coronal mass ejection 

(CME) event – a solar superstorm – might be catastrophic 
for our power grids, basically rendering any electrical de-
vice useless (National Research Council, 2008). This 
would impact not only our computers, mobile phones, and 
other electronic devices. In most large cities, even the wa-
ter supply is supported by pumps which depend on elec-
tricity (see Figure 2 for a projection of the impact of a 
strong CME event). A study by the National Academy of 
Sciences estimates an economic impact of such an event as 
20 times greater than the costs inflicted by Hurricane 
Katrina; restoring the global power grids might take years 
(Phillips, 2014). 

According to recent evaluations, such tragedy might 
not be as unlikely as one would wish. The probability of 
occurrence of a catastrophic CME event between 2012 and 
2022 was estimated at around 12% (Riley, 2012). This is a 
chance roughly equivalent to getting the flu in the US 
sometime along the year (Molinari et al., 2007, p. 5092). 
A catastrophic CME event actually nearly missed the Earth 
by a relatively small margin in 2012 (Phillips, 2014). 
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Figure 2 – Estimated Impact of a Solar Superstorm on 
USA Power Grids. Source: National Research Council, 
2008 

 
Seeing that most music in technology-dependent soci-

eties is transmitted over digital or electric devices, and that 
the subjacent infrastructure is sensitive to harmful interfer-
ence – from unwarranted social control and acts of terror-
ism to solar storms and coronal mass ejection (National 
Research Council, 2008)–, the wellbeing of the infosphere 
does not seem to have been given satisfactory attention. 
The increasing reliance of our musical culture on the health 
of an essentially vulnerable infrastructure raises serious 
ethical issues, at the very least from the perspective of a 
negligent ecological management of information.  

Furthermore, most information in the musical in-
fosphere might be perceived as an intangible cloud asset 
but is not secured by an intangible cultural heritage status. 
Consequently, an eventual energy collapse might perma-
nently prevent access to it, hence annihilating one of the 
most significant musical manifestations of our time. These 
are ethical implications of the mismanagement of music 
information which are not being adequately addressed. An 
information ethics-centred reflection on the imbalance be-
tween the expansion of the information society and its eth-
ical roots must be a priority in the context of our musical 
heritage, at the very least. 

3. ALTERNATIVES TO DIGITISATION 
POLICIES? 

Organisations – governmental or otherwise – can play 
a crucial role in ensuring the viability of traditional art 
forms. The development of wider audiences and raising 
public awareness might be the single most important safe-
guarding measure. This is, in a way, a counter-argument to 
the notion that the contact of wider audiences with some 
musical practices might be harmful. It is the equivalent of 
increasing storage redundancy (where the ‘storage’ is car-
ried out by individuals). By gaining familiarity with tradi-
tional music, audiences can promote its protection and 
popularity, attracting institutional interest and even a more 

active role of individuals in participating in the musical 
manifestations.  

Digitising our intangible musical heritage might not be 
sufficient to ensure the proper transmission of our cultural 
memory on to future generations. These are unprecedented 
challenges as our digital environment calls for the devel-
opment of a more active and empowered ethical frame-
work. This is not to say that digitisation policies are super-
fluous or not necessary, but safeguarding information re-
quires providing for the worst. As discussed above, the 
worst might effectively happen, as a catastrophic CME al-
ready did in fact happen in 1859 and seriously affected tel-
egraph lines (Cliver & Svalgaard, 2004).  

This paper is not advocating a return to a pre-electricity 
society, not even to a pre-digital society. As informational 
agents in the 21st century, we have ourselves been reshaped 
by the infosphere; to remove that aspect from our own 
selves would be an ontologically radical feat. Many of us 
might be ‘digital immigrants’, but many more others are 
bound to be ‘digital natives’ even more embedded ecolog-
ically in the infosphere. In a post-digital era, however, we 
are left with only our collective musical memory and what-
ever music is archived in non-electrical media (an archaic 
gramophone, as primitivist as this example may sound, 
could still play a record even if humanity were thrown 
back into the Stone Age). 

What this paper advocates is thoughtful examination 
on the preservation of our intangible musical heritage, 
which requires ensuring the integrity of knowledge about 
modes of production, techniques, lutherie, and the whole 
of musical manifestations – not only what is able to be rec-
orded – in an ethical, collectively responsible way. 
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ABSTRACT

This work focuses on the automatic makam recognition task for
Turkish Makam Music using chroma features. Chroma features
are widely used for music identification and tonal recognition
tasks such as key estimation or chord recognition. Most of prior
work on makam recognition largely rely on use of pitch distri-
butions. Due to the imperfection of automatic pitch extraction
for non-monophonic audio, use of chroma features is an alterna-
tive that has been showed to be effective in a previous study and
we follow the same approach. Our work does not propose a new
architecture  but  rather  considers  parameter  optimization  of
chroma based recognition for makams. In our tests we use an
open-content  dataset  and  perform comparisons  with  previous
studies. As a result of parameter optimization a better perfor-
mance is achieved. All resources are shared for ensuring repro-
ducibility of the presented results.

1. INTRODUCTION

This study is a continuation of automatic makam recogni-
tion  studies  carried  in  the  CompMusic  project  (Serra,
2017) and targets improving the performance of chroma
feature based automatic makam recognition.

The term ‘makam’ mainly refers to a modality system
in  middle  of  a  continuum  defined  by  a  particularized
scale and generalized tune on its two poles (Powers &
Wiering, 2001). Here we specifically consider the modal-
ity system of the Turkish makam music tradition where
the following descriptors are considered to be most es-
sential:  scale  description  (involving  micro-tonal  inter-
vals),  overall  melodic  progression  (seyir)  describing  a
path from one emphasis note to another until the ‘karar’
is  reached,  preference  of  specific  tri-tetra-penta  chords
used  to  form  melodies,  typical  phrases  and  dynamic
range for the melodic contour. For an in-depth review of
basic  concepts  of  Turkish  makam  music  and  previous
computational  studies  the  readers  are  referred  to
(Bozkurt, et al., 2014).

Automatic makam recognition can be carried on sym-
bolic or audio data. In (Ünal, et al., 2014), the authors use
an  n-gram approach  for  makam detection on  symbolic
data and report very high accuracies. Makam recognition
from audio is a much difficult task due to various charac-
teristics such as heterophony, high variability in interpre-
tations by musicians. The most common used approach in
literature (for  detection from audio) is  the use of  pitch
distributions  (extracted  from  audio  recordings)  with  a
template-matching (or nearest neighbor) strategy (Gedik

& Bozkurt, 2010; Karakurt et al., 2016). Pitch histograms
have indeed been used as a feature in various automatic
recognition tasks since early days of Music Information
Retrieval (MIR) (Tzanetakis, et al., 2003). Karakurt, et al.
(2016) also presents application of this approach on two
other  music  traditions:  Hindustani  and  Carnatic  music
(with accuracies 0.92 for 30 ragas and 0.73 for 40 ragas
respectively).

Chroma features are frequently used for many tonality
related MIR tasks such as chord recognition, tonality de-
tection, audio classification (Dighe et al., 2013; Müller &
Ewert, 2011; Jiang et al., 2011) and is a good alternative
to pitch distribution features for non-monophonic audio.
Chroma based  makam recognition  has  been  previously
considered by Ioannidis et al. (2011), where the authors
follow two distinct approaches for automatic makam clas-
sification. First, they apply a makam template-matching
method where the templates are constructed from anno-
tated  data.  Secondly,  automatic  classification  is  per-
formed using support vector machines. In our study, we
follow a similar approach to the second approach in the
aforementioned paper since it shows considerably better
performance than template matching approach. We focus
on parameter factorization for improving the performance
via use of larger window size which reduces noise in fea-
tures, testing various dimensions for the chroma represen-
tation and hyperparameter optimization for the automatic
classification stage. We conduct our experiments on the
Ottoman-Turkish Makam Music Dataset (Karakurt, et al.,
2016), which is the most comprehensive dataset available
for computational research on Turkish Makam music. The
proposed method is  compared with all  past  approaches
using the same set of makams. The performance of our
methodology on the same nine makams show that our ap-
proach  outperforms  the  prior  work  of  Ioannidis  et  al.
(2011),  by  more  than  %10  in  overall  accuracy  and
achieves slightly better accuracy scores compared to the
state of the art over 20 makams (Karakurt, et al., 2016)
which uses pitch histograms as feature. 

To sum up, the work presented in this paper provides a
bottom-up demonstration of  a  chroma-based supervised
mode recognition architecture, and an evaluation method
on  an  open-content  dataset  for  future  research  on  the
topic. 
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2. DATASET

The  Ottoman-Turkish  makam  recognition  dataset
(Karakurt et al.,2016) is the most comprehensive dataset
for computational research on makam music, that is open
content and is available for researchers. The entire set for
the analysis in this study is composed of 997 audio tracks
within the OTMM, which are distributed over 20 makams
(Table 1). The tonic frequency of each track (available in
the dataset) has been obtained and annotated by extract-
ing pitch at the approximate mid-point of the last note in
the performance (which has been annotated manually).

Makam
Type

#_of_
Tracks

Makam 
Type

#_of_
Tracks

Makam Type #_of_
Tracks

Acemaşiran  50 Huzzam  50 Rast  50

Acemkürdi  49 Karcigar  50 Saba  50

Bestenigar  50 Kurdilihicazkar  50 Segah  50

Beyati  49 Mahur  50 Sultaniyegah  50

Hicaz  50 Muhayyer  50 Suzinak  50

Hicazkar  50 Neva  50 Ussak  50

Huseyni  49 Nihavent  50 Total 997

Table 1. OTMM – Makam Set / number of tracks

Initially,  experiments  were  performed  on  the  entire
OTMM  dataset.  Even  though  there  exist  hundreds  of
variations of makam types, the set of makams in OTMM
is representative of this music tradition. In the previous
works of Gedik & Bozkurt  (2010) and Ioannidis et  al.
(2011),  experiments  contained  data  from  only  9  com-
monly used makams, which are Hicaz, Huseyni, Huzzam,
Kurdilihicazkar, Nihavent, Rast, Saba, Segah, Ussak. For
the  second  stage  of  the  experiments,  the  experimental
procedures are performed on this makam set (449 tracks)
to observe the effects of parameter factorization on HPCP
(Harmonic Pitch Class Profiles) features and performance
of supervised learning classifiers, in comparison with the
work of the aforementioned study.

3. SYSTEM ARCHITECTURE

Our system uses chroma features for automatic classifica-
tion. The main advantage of  using chroma features for
this task is that it discards the need of automatic melody
extraction of polyphonic audio, which introduces many
complexities.

There  are  several  ways  to  extract  chroma  features.
Most commonly used techniques include either applying
spectral  analysis  on  audio  frames  and  quantizing  the
frame spectrum into frequency bins (Fujishima, 1999), or
employing  suitable  filter  banks  for  the  pitch  classes
(Müller  &  Ewert,  2011).  In  our  methodology,  we  use
Harmonic  Pitch  Class  Profiles  (HPCP),  extracted  in  a
similar  fashion  as  explained  in  the  study  of  Gómez
(2006). Figure 1 shows the general structure of the pro-
posed system. The choices of parameters for each step are
explained in detail in this section.

              

Figure 1. Schematic representation of the system ar-
chitecture

3.1. Audio Signal Processing

3.1.1. Preprocessing

At the preprocessing stage, DC offset removal is applied
on the audio signal using Infinite Impulse Response (IIR)
filters. Then, to account for human perception non-linear-
ity, the audio signal is filtered with inverted approxima-
tion of equal loudness  curves.  During our experiments,
we have observed that application of these preprocessing
steps  show  some  improvement  in  the  robustness  of
chroma features against transient noise.

3.1.2. Feature Extraction

After  filtering  out,  spectral  analysis  based  on  Fourier
transform is performed on a frame-based analysis strat-
egy. The frame sizes are chosen as 200ms and hop size as
100ms,  which  outputs  10  frames  per  second.  As  men-
tioned in Jiang, et al. (2011), larger size windows are pre-
ferred over smaller window sizes for mid-level musical
information recognition task like chord recognition. Also
a smaller window sized window tends to capture more
transient noise on the audio signal as opposed to using a
larger size window.  Besides obtaining chroma features
more  robust  to  noise,  larger  hop size  also  reduces  the
computation cost.

For the computation of the chromagram on the frame
level, spectral peaks are detected from the local maxima
in the frame spectra (Serra & Smith, 1990). The spectral
peaks  to  be  detected  are  limited  within  the  frequency
range 100 – 5000 Hz. The spectral peaks are then mapped
to the finite number of frequency bins (12, 24, 36,..) with
Equation  1  (Gomez,  2006),  where  n denotes  the
HPCP bin of to be considered and ai and f i denote
the linear  magnitude  and frequency values  of  the peak

i .

HPCP (n)= ∑
i=1

nPeaks

w (n , f i) . ai

HPCP :Harmonic PitchClassProfile
nPeaks :number of spectral peaks

(1)

The frequency mapping process require two important
considerations to obtain features that are representative of
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the musical signal. Initially, a reference frequency must
be set for frequency mapping of the frame spectrum. This
reference frequency can also be referred as the first bin of
the HPCP vector. Moreover, the number of equally sepa-
rated bins within one octave (or in other words the size of
HPCP vectors) needs to be taken into account as a param-
eter for music traditions that exploit microtonal intervals
to construct melodies. One of the main goals of this work
is to shed light on the effect of varying sizes of HPCP
vectors for the analysis of non-Western music traditions. 

3.1.3. Reference Frequency

In  chromagram  computation,  the  center  frequencies  of
each bin in HPCP vectors are determined with respect to
a reference frequency. The general  approach is to esti-
mate  the  reference  frequency  by  computing  spectral
peaks with respect to the standardized tuning frequency
of 440Hz. Here, we use the manually annotated tonic fre-
quencies of the tracks available in the data set. Frequency
mapping of spectral peaks is performed directly with re-
spect to the tonic as the reference frequency.

3.1.4. Normalization:

As explained in detail in (Müller & Ewert, 2011),  nor-
malization on a frame basis is necessary at the post-pro-
cessing step in order  to discard the effects of dynamic
variations. In our study, we employ  l1 -norm (Equa-
tion 2) which corresponds to normalizing  elements of the
chroma vector  x  with respect to the sum of all ele-
ments of the vector. By doing so, we obtain the chroma
histogram representation of each track in the dataset.

‖x‖1:=(∑
i=1

N

|x (i )|) (2)

3.2 Classification

3.2.1. Feature Set

The initial set of features are the bins of N-bin normal-
ized and averaged HPCP histograms which are computed
as the global mean chroma for each track. The normal-
ized global HPCP mean histograms of a musical perfor-
mance can also be referred as the normal distribution of
averaged pitch-classes of a track. It is expected that this
distribution  would  give  an  insight  about  the  harmonic
structure of the piece. In addition to the averaged HPCP
vectors, we also include variance related information in
our feature set, by simply computing the standard devia-
tion of bins of HPCP vectors separately and globally for
each track. As depicted in Figure 2, the standard devia-
tion  histogram  shows  a  similar  trend  with  the  mean
HPCP histogram.  This  implies  that  standard  deviation
also  contains  some  information  related  to  the  makam
scale and its emphasized tones, which can be used for au-

tomatic classification. In our experiments including stan-
dard deviation in the feature set, we have observed a con-
siderable increase in the accuracy of automatic classifica-
tion, which is explained in Section 4.

Figure 2. 24-bin - Mean vs. Standard Deviation HPCP
histograms

An essential aspect of the makam concept is the fixed
‘tonal-spatial’ (or tonal-temporal) organization referred as
seyir. As part of that aspect, the melodic organization and
emphasis in the opening of a piece or improvisation plays
a crucial role in forming a makam as defined in the the-
ory.  To account  for  more  accurate  makam  estimation,
characteristics of the melodic progression also needs to
be taken account. It has been previously shown that the
first part of the overall melodic contour (i.e. beginning of
the performance) carries some discriminative characteris-
tics  in  Turkish  makam music  (Bozkurt,  2012;  Bayrak-
tarkatal & Öztürk, 2015). To incorporate that, alongside
with the global  features set,  statistical  features are also
computed locally from certain portions of the beginning
of  tracks.  To determine  a  more  suitable  portion  of  the
song, varying percentages of the full track are tested.

3.2.2. Supervised Learning

Automatic classification of the songs according to makam
classes are performed using supervised learning. Differ-
ent  combinations  of  the  statistical  features  set  defined
above were used to train a support vector machine with
radial basis function kernel. The evaluation of each test
feature subset are given in Section 4.

The training of support vectors is done with radial ba-
sis function kernels. For each test on feature subsets, the
hyperparameters of the support vector classifier has to be
optimized for each iteration. For training support vector
machines with RDF kernel, there are two hyperparame-
ters that need to be tuned to achieve good performance:
penalty parameter (regularization constant) C and the ker-
nel coefficient γ. We apply grid search method for hyper-
parameter optimization which is an exhaustive searching
process over a set of defined parameters. For the regular-
ization constant, iterations are done on the following set:
C={0.001,0.01,0.1,1,10,100,1000  }  for  the  penalty  pa-
rameter  and  γ={0.001,0.01,0.1,1}  for  gamma.  The  grid
search parameters are validated using 10-fold cross vali-
dation on the train set. The parameter combination that
gives the best average cross-validated accuracy is used to
build  the  overall  model.  Then,  we  test  our  classifier
model, which is trained on the training set, and make pre-
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dictions on the test set. To ensure that there is no over-fit-
ting  in  the  results  and  achieve  a  high  generalization
power, the experiments are repeated 10 times over ran-
domized and stratified test & train data splits. In the re-
sults, we report the average accuracy and F measure of
these experiments. Furthermore, to maintain reproducibil-
ity,  the  random  seed  is  fixed  and  documented  in  our
shared  code.  The overall  result  of  predictions with the
best performing feature set are shown via confusion ma-
trix in Section 4. 

4. RESULTS

The effects of HPCP parameterization on automatic clas-
sification with SVMs are tested using stratified 10-fold
cross validation. The hyperparameters of the classifier are
tuned on the training set using grid search and makam es-
timations are performed on the testing set which is ran-
domly selected but stratified %10 of the whole set. In or-
der to obtain statistically less biased results, the evalua-
tion pipeline is performed on ten different and random-
ized train/test splits.

4.1. Experiments on 20 makams:

Automatic classification is performed over 997 songs in
20 makams. In our study we test the performance of us-
ing 12, 24, 36 and 48 bins in the HPCP vectors. In addi-
tion  to  the  scale  of  vector  size,  the  effect  of  different
combinations of statistical features in the feature set are
tested.  Finally, F-measures  and accuracy  scores  are  re-
ported.  Since  the  dataset  is  balanced,  weighted  macro
scores over the dataset are appropriate measures for eval-
uation.

Table  2  presents  resulting  F  scores  of  cases  with
varying number of bins and feature sets which represent
the global statistics of HPCP vectors. It is seen that stan-
dard deviations of HPCP vectors improve the classifier’s
performance. This improvement is more significant as the
number of bins increase.

F-Measures  12 - bins 24 - bins 36 - bins 48 - bins

Mean 0.64 0.64 0.65 0.66

Stdev. 0.65 0.7 0.69 0.7

Mean+Std 0.65 0.7 0.7 0.7

Table 2.  F Measure of varying number of bins and fea-
ture set combinations (Full track)

As explained in Section 3.2, the makam of the song is
generally introduced with emphasis at  the beginning of
the track. In addition to the above experiments, we also
provide a comparison of the global chroma features and
chroma features obtained locally from the beginnings of
the songs. To determine a good estimation of size of such
a region for the beginning of the songs, an iteration over
varying portions of the track (from %5 to %40) is per-
formed. (Figure 3) In the figure only the combination of

mean  and  standard  deviation  features  are  shown  since
they outperform the only-mean HPCP features. This anal-
ysis has a potential for revealing some future directions
for automatic makam recognition task, including a further
structural analysis for this tradition.

Figure 3:  F_scores of classification with local statistical
features (Mean + St.dev.)

The results in Table 2 and Figure 3 indicate that higher
resolution in the HPCP vector increases the classification
scores. Features with vector size of 48 shows slightly bet-
ter performance than the rest, hence this resolution is set
for  the  following  experimental   steps.   Moreover,  the
classifier has a better performance when trained with the
local chroma histograms instead of global. Regarding sta-
tistical  features,  further  investigation  is  performed  to
highlight  possible  directions  to  improve  classification
performance. Table 3 shows the evaluation of the combi-
nations of local and global statistical features. In this step,
the local features are obtained from the first %30 of the
whole track.

Feature_Set (HPCP) 12-bins 48-bins

F Measure Accuracy F Measure Accuracy

Mean(full) 0.64 0.65 0.66 0.67

Std(full) 0.65 0.65 0.67 0.72

Mean(Full)+Std(Full) 0.65 0.66 0.67 0.7

Mean(Local) 0.65 0.65 0.67 0.67

Std(Local) 0.66 0.67 0.73 0.74

Mean(Local)+Std(Local) 0.7 0.71 0.72 0.72

Mean(Full)+Std(Local) 0.71 0.72 0.74 0.74

Mean(Local)+Std(Full) 0.71 0.72 0.74 0.75

Std(Local)+Std(Full) 0.72 0.73 0.76 0.77  

Table 3. Evaluation scores of classifier models with vary-
ing feature set combinations, 12-bin vs. 48-bin (Analysis
on 20 makams)

With the best performing feature set combination and
HPCP parameters, our system is able to score 77% over-
all accuracy. These results are comparably better that the
current state of the art methodology on the task (Karakurt
et al., 2016), where their best performing parameters re-
sult in 71.8% accuracy.

In Figure 4, we present the confusion matrix for our
system using 48-bin HPCP vectors (mean HPCPs of the
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first 30% together with standard deviation of HPCPs of
the whole track). Here, the confusion matrix includes the
classification instances in the tests over all of the ten ran-
domized sets. We discuss our observations on the confu-
sion matrices in Section 5.

Figure 4. Confusion Matrix of 20 makams analy-
sis

4.2 Experiments on 9 makams:

To have a clear comparison with prior work, we have per-
formed the same experimental procedure over 449 songs
in 9 makams. The makam set  for  this stage of  experi-
ments is chosen in consideration with previous research
on the topic. (Ioannidis, et al., 2011) In their study, Ioan-
nidis, et al. (2011) use 159-bin HPCP vectors as the fea-
ture set which is constructed in parallel with the theoreti-
cal  knowledge.  The experiments  in  this  paper consider
bin variations within [12,24,36,48]. 

Feature Set(HPCP) 12-bins 48-bins

F_Mea-
sure

Accu-
racy

F_Mea-
sure

Accu-
racy

Mean(Full) 0.76 0.77 0.8 0.8

Std(Full) 0.81 0.82 0.82 0.82

Mean(Full)+Std(Full) 0.81 0.81 0.85 0.85

Mean(Local) 0.77 0.77 0.82 0.82

Std(Local) 0.8 0.81 0.86 0.86

Mean(Local)+Std(Local) 0.82 0.82 0.86 0.87

Mean(Full)+Std(Local) 0.82 0.83 0.89 0.89

Mean(Local)+Std(Full) 0.84 0.84 0.87 0.87

Std(Local)+Std(Full) 0.86 0.86 0.89 0.89

Table 4. Evaluation scores of classifier models with vary-
ing feature set combinations (Analysis on 9 makams)

In order to provide a concise comparison, only the re-
sults of the best performing local features of 12-bin and
48-bin feature vectors, in combination with global statis-
tics are shown. (Table 4) The classification scores of pro-
posed methodology shows a robust performance with the
classification accuracy of  %89.  This result outperforms
the prior works of Ioannidis et al. (2011) where their best
performing approach scores an F-measure of %73. Addi-
tionally, Table 4 shows the scores for the case where the
HPCP vector resolution is 12-bins per octave, which is
the standard resolution in MIR. Finally, confusion matrix
of the best resulting model for the test with 9 makams is
illustrated in Figure 5.

Figure 5. Confusion Matrix  of 9 makams analysis

5. DISCUSSIONS

The research presented in this paper explores the signifi-
cance of parameter selection for extracting chroma fea-
tures and proposes the use of different statistical features
for  automatic  makam classification.  The outperforming
results of second stage of the experiments (analysis over
9  makams)  is  highly  due  to  parameter  factorization.
Larger size for windows serves better than a smaller size
one for automatic modality detection tasks. This observa-
tion agrees with the previous work done in Western music
traditions (Müller & Ewert, 2011; Jiang, al., 2011). Be-
sides  the window sizes,  higher HPCP vector  resolution
has  a  positive  effect  on the  classification performance.
Another important aspect that may have an impact on the
performance increase is the hyperparameter optimization
for the automatic classifier.

Our  study shows that  adding various  statistical  fea-
tures to the feature set shows a significant improvement
for automatic classification as well as the other factoriza-
tion explained above. Tests over the number of bins re-
veal that further research is necessary to study the size of
chroma vectors when analyzing music from non-Western
traditions. The results show better performance for sizes
greater than 12. In Figure 3, Table 3 & Table 4, it is ob-
served that the features obtained from the beginning of
the tracks result  in improvement of  classification accu-
racy. Even though this does not contradict with the the-

23



ory,  further  research  is  necessary  on  the  structure  of
songs in makam music tradition.

Studying the confusion matrices in Figure 4 and Fig-
ure 5, we observe that most of the mis-classifications oc-
cur  for  makams  which  have  very  similar  or  the  same
scales, like  Mahur  and  Rast, or  Muhayyer  and  Huseyni,
or Beyati and Ussak, or Nihavent and Sultanıyegah. This
implies  that  the classifier  learns  and extracts  musically
meaningful  information  from  the  chroma  features,  re-
garding makams.  Moreover, the common confusions in
similar  scales  indicate  the  necessity  of  expanding  the
analysis  into  more  other  dimensions,  like  expanding
chroma  feature  vector  into  two  octaves,  since  octave
equivalency does not hold for certain makams. Further
tests  are  done  to  observe  the  effect  of  smoothing  the
chroma frames in time, which did not show any improve-
ment in the performance of our system. At the classifica-
tion stage, we have tried to reduce the dimensionality of
our  feature  space  using  principal  component  analysis,
which neither showed an increase in the results. Thus de-
tailed discussions related to smoothing and dimensional-
ity reduction are not provided in this study.

6. CONCLUSION

Our  approach  of  automatic  makam  classification  with
chroma features sets a baseline for further research on the
topic. Moreover, for reproducibility purposes, we share a
Jupyter Notebook demonstration of our work1. The list of
MusicBrainzIDs of the songs in this study can be found
in the same repository. The future directions of our re-
search  include  testing  various  other  chroma  features
(NLSS Chroma, Chroma Toolbox) on automatic makam
classification  task  and  applying  structural  analysis  for
segmentation  of  makams  by  detecting  the  harmonic
changes in the performance.
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ABSTRACT

The leader–follower relationship among performers is an im-
portant aspect in the studies of interpersonal entrainment in the
context of musical performance, specially when analysing the
role of leadership in instances of changing tempo and/or dynam-
ics. This research focuses on Uruguayan Candombe, a rich drum-
ming tradition deeply rooted in the Afro–Atlantic culture. The
purpose of this paper is to analyse the mechanisms by which
Candombe drummers may coordinate and synchronize changes
in tempo and dynamics during the performance, specifically at
the process called “subir la llamada”. Of special interest is the
analysis of the cues given by the drummer that leads the rest of
the group in the process. Taking one particular recording by three
expert Candombe drummers as case study, several computational
tools were applied to extract features relevant to the analysis from
the audio and video signals.

1. INTRODUCTION

The study of interpersonal entrainment in the context of
musical performance is an area of research that has re-
ceived increased attention in recent times. Its aim is to
develop a better understanding of the ways in which groups
of musicians coordinate their behaviour during performance
(Clayton, 2012). An important aspect is the analysis of the
leader–follower relationship among musicians, specially in
instances of changing tempo and/or dynamics.

This research was carried out in the context of the Inter-
personal Entrainment in Music Performance project, 1 and
its purpose is to analyse the mechanisms by which Can-
dombe drummers coordinate and synchronize changes in
tempo and dynamics during the performance, specifically
at the process called “subir la llamada”. Of special inter-
est is the analysis of the cues given by the drummer that
leads the rest of the group in the process.

The research is based on a case study, analysing a spe-
cific performance with the aid of a set of computational
tools. The chosen performance was taken as a complete
musical statement by three individual performers, under-
lining at the same time idiomatic features commonly found
in the corpus. The tools used are described in Section 4,
and were applied to extract features relevant to the analy-
sis from the audio and video signals (Figure 4).

Thus, this study departs from the corpus analysis ap-
proach very common in computational musicology when
dealing with non–Western traditional music, based on the
statistical analysis of large amounts of data.

1 https://musicscience.net/projects/iemp/

2. MUSICAL BACKGROUND

Deeply rooted in the Afro–Atlantic culture, Uruguayan Can-
dombe drumming is internationally less known than other
Latin American musics of African origin, such as Afro–
Cuban or Afro–Brazilian. It possesses however a consid-
erable rhythmic wealth and deserves wider recognition. Its
most important and representative manifestation is the lla-
mada de tambores, a drum–call parade of a group of drum-
mers (typically between 20 and 60) marching on the street
playing the characteristic Candombe rhythm, also called
ritmo de llamada.

Like in other musics of the Afro–Atlantic tradition, the
rhythm of Candombe is clave–based, with a cycle of four
beats subdivided in sixteen pulses. The rhythm is the result
of the interaction of the patterns of three drums of different
size and pitch, called chico, repique and piano. The drum–
head is hit with one hand bare and the other holding a stick
that is also used to hit the shell when playing the clave or
madera pattern (Figure 5). This timeline pattern is played
by all the drums as an introduction to and preparation for
the llamada rhythm; during the llamada, it may be played
only by the repiques in between phrases (Jure, 2017).

Tempos in Candombe may vary from ca. 100 bpm for
a slow llamada to around 150 bpm for very fast perfor-
mances. The most characteristic tempos, however, are in
the range of ca. 130 to 136 bpm. It is relatively common to
begin the llamada at a slower tempo and then increase the
speed to reach a typical tempo. After that, minor fluctua-
tions are idiomatic (Figure 6). Essential to this practice is
the concept of “subir (“raise”) la llamada”, a term shared
and understood by all the members of the community, al-
though not formally defined. This process is primarily as-
sociated with an acceleration in tempo, but also involves
an increase in dynamics and the use of certain patterns per-
ceived as conveying more energy. The instance of one of
the performers giving the cue to begin this process is re-
ferred to as “llamar (“call”) a subir”.

2.1 The three drums and their rhythmic patterns

The three drums have different functions in the rhythm and
specific patterns associated with their respective registers.
The small, high–pitched chico drum is the timekeeper, es-
tablishing the pulse by repeating a simple one–beat pattern
throughout the whole performance (chico de dos or chico
liso). The only possible variant is playing an alternate pat-
tern in sections with a slower tempo (chico de tres or chico
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repicado) (Figure 1). 2

Figure 1: Standard chico pattern (top) and a common vari-
ant used in slower tempos.

The middle–sized repique drum, on the other hand, is
regarded as a soloist and improviser, and has the great-
est degree of variability among the three drums. During
performance, a repique player typically interposes cycles
of madera pattern in between repique phrases. These can
be characterized by having a higher degree of syncopation
and rhythmic and technical complexity. The repique has,
however, a primary pattern (repique básico or repique cor-
rido), that may constitute a significant portion of the per-
formance of a repique during the llamada (Jure, 2013).
The short excerpt transcribed in Figure 2 displays these
three behaviours.

The piano drum, the largest and lowest sounding of the
three drums, has two different functions. The primary one
(piano base) is to delineate the timeline with characteristic
one–cycle patterns. There are many variants, that depend
on both the style of each neighbourhood and on the indi-
vidual style of the performer. But the piano drum can occa-
sionally interpose more ornamented repique–like patterns
(piano repicado), typically one or sometimes two cycles
long (Rocamora et al., 2014).

Figure 3 shows the two main base and repicado patterns
found in this recording. They are notated in their basic con-
figuration; 3 during actual performance several subtle vari-
ants are introduced by means of added strokes and ghost
notes (see also Figure 8).

3. CASE STUDY

The recording taken as a case study in this work is part of
the audio–visual dataset of Candombe performances pre-
sented in (Rocamora et al., 2015). It features three ex-
pert drummers of the same generation, members of fam-
ilies of long–standing tradition in the community of barrio
Palermo (Ansina): Héctor Manuel Suárez (b. 1968), Luis
Giménez (b. 1969), and Sergio Ortuño (b. 1966). The
three are known as accomplished players of the three types
of drum, but in this particular take they played repique,
chico and piano, respectively (see Figure 5).

The performance was recorded using a multi–track au-
dio system and filmed with a multiple–camera video set–
up. The audio set–up provided a stereophonic recording of

2 In all the examples, the lower line represents the hand and the upper
line the stick, with an X representing the madera sound. Parenthesized
notes are de–emphasized or ghosted.

3 The technique of the piano drum is more complex and requires some
additional symbols: a cross represents a muted note (the hand and/or stick
rest on the drum–head after striking it), and a stem without note head
means dampening the vibration with the palm without producing a sound.
The triangular note head means palming the drum head with the fingers.

the ensemble and separate audio channels of each drum—
yielding clean direct sound from a given drum, with almost
no interference from the others. Therefore, the separate au-
dio channels were used for automatically extracting infor-
mation of each drum independently. As for the video, only
the wide shot of the ensemble was used in this work.

4. INFORMATION EXTRACTION

Some computational methods for information extraction
are applied to the audio–visual record of the performance,
oriented towards capturing and representing the evolution
over time of the most relevant aspects noted above, namely
tempo, dynamics and rhythmic patterns. For the analysis
of dynamics only the chico drum is considered, since—
given that it always repeats the same one–beat pattern—it
allows for a consistent and comparable estimation through-
out the whole performance. Two different kinds of infor-
mation are extracted for this purpose: the root mean square
(RMS) value of the audio waveform of the separate track,
and the amplitude of the trajectory of the left hand of the
performer obtained from the video. In addition, an onset–
based asynchrony analysis is carried out, for providing in-
formation on interpersonal entrainment and leadership.

4.1 Tempo curve

The evolution of the tempo is computed as the inverse of
the difference between two adjacent downbeats (first beat
of the four–beat cycle) and expressed in beats per minute
(bpm). The downbeats were automatically extracted by us-
ing BayesBeat (Krebs et al., 2013) trained with the dataset
released in (Nunes et al., 2015). The extraction of down-
beats was very reliable, yielding an F-measure of 100%
when compared to manual annotations using the standard
±70 ms tolerance, as in (Nunes et al., 2015). The resulting
tempo curve is depicted in the second plot of Figure 6.

4.2 Dynamics

The root mean square (RMS) of the audio waveform of the
chico separate track was computed for consecutive signal
frames (using a frame length of 1 second and a hop size of
0.5 seconds) and expressed in decibels. The third plot of
Figure 6 shows the RMS values obtained (solid line).

The left hand of the chico performer exhibits a cyclic
up–down movement in relation to the drum head, that cor-
responds to the hand stroke at the second subdivision of
each beat (in both patterns, see Figure 1). A measure of
the extent of the trajectory of the left hand of the chico per-
former is considered as an indirect estimate of the dynam-
ics of the performance. To do that, an existing computer
vision system called OpenPose was applied, that detects
human body, hand, and facial keypoints for multiple per-
sons from single images (Cao et al., 2017). An example of
the detections for one video frame can be seen in Figure 4.

The location of the left hand in each video frame is pro-
vided as an x–y point in pixels. Then, the locations are fur-
ther processed using moving maximum and moving mini-
mum filters to estimate the boundaries of the hand move-
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Figure 2: Transcription of mm. 7–15 of the repique solo in this performance, displaying the madera pattern, complex
improvised phrases and the primary repique pattern at the end.

Figure 3: Rhythmic patterns of the piano drum in this per-
formance. From top: base 1, base 2, repicado 1 and repi-
cado 2.

ment within a certain time interval. Finally, the difference
between the estimated boundaries is considered as the ex-
tent of the trajectory over time. The result of this procedure
is represented in the third plot of Figure 6 (dashed lined). It
is worth noting that, not surprisingly, the RMS values and
the hand motion signal show roughly a similar behaviour. 4

4.3 Rhythmic pattern analysis

The analysis of rhythmic patterns is based on the spectral
flux, a feature extracted from the audio signal that cap-
tures changes in the energy content in different frequency
bands. The separate audio track of each drum is processed
to conduct two different type of analysis: 1) the detection
of madera rhythm cycles (Rocamora & Biscainho, 2015;
Jure & Rocamora, 2017), and 2) the extraction of a feature
map of rhythmic patterns (Rocamora et al., 2014).

The spectral flux feature is computed through the Short–
Time Fourier Transform of the signal mapped to the MEL
scale for sequential 40 ms duration windows in hops of
10 ms. The resulting sequences are time–differentiated and
half–wave rectified. The spectral feature is summed across
all the MEL bands for onset detection, whereas the first
MEL bands (< 1500 Hz) are used for sound classification.

Onset detection is based on a combination of a fixed and
an adaptive threshold, as in (Böck et al., 2012). A Sup-
port Vector Machine classifier trained on isolated sounds
is used to detect madera sounds. The proportion of onsets

4 Pearson correlation coefficient: r(342) = 0.56, p < 0.001.

classified as madera within a rhythm cycle is used to detect
clave patterns (Rocamora & Biscainho, 2015).

Then, the spectral feature summed across all the MEL
bands is amplitude–normalized and time–quantized to the
16–subdivisions grid using the manual beat/downbeat an-
notations. A representation in the form of a map of cycle–
length rhythmic patterns is straightforwardly obtained by
building a matrix whose columns are consecutive feature
vectors. Figure 8 depicts the map obtained for the piano
drum track, where the horizontal axis corresponds to the
cycle index and the vertical axis is the subdivision index.
The columns of the map virtually correspond to each of
the cycle–length rhythmic patterns performed by the piano
drum along the whole recording. To aid the analysis of
their differences and similarities, the rhythmic patterns are
clustered using the K–means algorithm and the Euclidean
distance, the number of cluster specified as an input pa-
rameter. The clusters obtained for the piano drum—shown
with different colors in Figure 8—match the characteristic
rhythmic patterns actually performed. The centroids of the
clusters are also depicted in Figure 8 for reference.

A simplified schematic representation of the rhythmic
patterns obtained for each drum is provided in the top plot
of Figure 6, and will be analysed in Section 5.

4.4 Asynchrony between ensemble parts

An analysis of the asynchrony between onsets by differ-
ent ensemble parts in the same metric position was carried
out, following (Polak et al., 2016; Rocamora et al., 2017).
Given the tempo changes of the performance, the onsets
timing data was normalized to the four–beat rhythm cycle.
To do that, the annotated downbeats were used as an initial
reference, which was further refined by estimating down-
beats positions as the average of the onsets of the different
drums at the beginning of each rhythm cycle. Then, an ag-
gregated histogram of all the onsets was computed, heuris-
tic boundaries were defined between metric positions, and
each onset was assigned to its corresponding metric bin. A
virtual reference for each subdivision was obtained as the
mean of all onsets within each metric bin.

Signed asynchronies were computed for each onset of
each drum relative to the virtual reference subdivision. The
values of mean and standard deviation of the signed asyn-
chronies, computed for windows of ten consecutive rhythm
cycles, are schematically depicted at the bottom of Figure 6.

27



Human
Body

Detection

Hand Tracking
(chico drum) Dynamics

(RMS & hand)

Audio RMS

Pattern Analysis

Onset Detection

Rhythmic
Patterns

Maps

Tempo
Curve

Downbeat
Tracking

Signed
Asynchronies

Asynchrony
Analysis

st
e
re

o
 r

e
co

rd
in

g
so

lo
 t

ra
ck

s
vi

d
e
o

chico

repique

piano

3 3

Figure 4: Block diagram of the computational tools applied and the information obtained.

Figure 5: Left to right: Héctor Manuel Suárez, repique,
Luis Giménez, chico, Sergio Ortuño, piano.

Despite minor differences, the profile of the averaged asyn-
chronies is similar along the whole performance, showing
that the repique tends to be before the other two drums.
The mean asynchronies obtained for each drum are be-
low 2% of the normalized local beat duration, which cor-
responds to mean asynchronies in the range 8.2 and 12 ms,
depending on the tempo value.

Figure 7 provides a detailed representation of the loca-
tion of the onsets for the rhythm cycles corresponding to
the first tempo increase (8 to 13). Note that the obtained
grid of virtual reference subdivisions is not isochronous.

5. ANALYSIS

The recording has a duration of ca. 2:45 min. and com-
prises 86 complete cycles, ending in the downbeat of cycle
87. After a short introduction (a tremolo of the repique and
two cycles of madera followed by a repicado in the piano),

the llamada rhythm begins in the fourth cycle. The tempo
curve shows an initial tempo that can be considered slow
for Candombe (ca. 105–106), but—in a paradigmatic ex-
ample of subida—there is a notorious increase in tempo
beginning at around m. 9–10, reaching a more typical
tempo of ca. 128–130 at m. 15, and another (minor) in-
crease around m. 22. This first section of the performance
(ca. 50 seconds) was analysed with some detail, revealing
some relevant aspects:

a) there is a strong but not linear correspondence be-
tween the tempo curve and dynamics of the chico drum,
with increments in sound level and trajectory related with
the increases in tempo (Figure 6, mm. 10–20);

b) the first subida is led by the piano drum by means
of microrhythmical displacements of the notes. While the
average asynchrony between the three drums remains ap-
proximately constant throughout the whole performance
(Figure 6, bottom), Ortuño plays systematically ahead of
the chico certain groups of notes in mm. 9–11 (Figure 7,
compare with mm. 8 and 12–13);

c) the rhythm patterns play a fundamental role: the pia-
no calls to raise the rhythm by playing ahead the notes lo-
cated in specific places in the rhythmic cycle, the repique
reinforces the raise by playing repicado corrido, and the
chico switches from chico de tres to chico de dos when the
new tempo is reached;

d) the second subida is essentially pattern–based: it is
led by the repique by playing repicado corrido in m. 21,
and is immediately responded by the piano by switching
from the ornamented first base pattern to the “straighter”
second base in m. 22 (Figure 3). The chico drum also re-
acts with a local increment in dynamics. Although quanti-
tatively small, this second raise is perceived as a significant
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increase in energy, due to the patterns involved.

6. DISCUSSION AND FUTURE WORK

In this work, a particular Candombe performance was anal-
ysed with the aim to study the processes by which the play-
ers negotiate tempo and dynamics. Several computational
tools were applied to the audio–visual record of the per-
formance and succeeded in providing relevant information
for the analysis.

Three phenomena were found to be involved in the pro-
cess of “subir la llamada”: an increase in tempo (either
moving from a slower initial tempo to a faster tempo, or
a local accelerando); an increase in dynamics, measurable
both in levels of sound energy and in the extent of the hand
trajectory; the use of certain patterns considered with a
more propulsive rhythm: the repicado básico (as opposed
to more complex figurations), the chico liso (as opposed
to chico repicado) and a straight llamada piano base (as
opposed to more ornamented base patterns).

With respect to the means by which one player leads the
process (“llama a subir”), also three types of cues were
found. As was expected, microtiming played an important
role (arguably the most important), with the drum leading
the process playing “ahead” to “push” the rhythm. Dynam-
ics was also a factor (playing louder to signal an increase
in energy), as well as the use of specific rhythmic patterns
recognized as “callers” (llamadores).

In future work, the analysis of the facial key points pro-
vided by the computer vision system could be addressed,
in order to extract further information on the interaction
between musicians. Another relevant research strand to
develop is the automatic detection of the information gov-
erning the mechanisms of coordination and synchroniza-
tion, such as small variations in onset asynchrony, so as to

be able to predict the changes in tempo and dynamics.
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ABSTRACT 
 

Several medieval chant traditions are preserved in precursors of 

modern music notation. Virtually all chants of the Mozarabic 

rite are only preserved in the earliest of these: pitch-unreadable 

neumatic notation. Melodic intervals are not available. This pa-

per sketches two computational methods to produce melodies 

based on a comparison of transcriptions of the early notation 

with pitch-readable preserved traditions encoded in a data set.  

1. NOTATION, ENCODING & AN EXAMPLE 

In 1973 Don Randel published a detailed description of 

over 5,000 chants of the Mozarabic rite preserved in 

about forty manuscripts and fragments dating from the 

early eighth until the thirteenth centuries. Several genres 

were included, from very simple to most complex: Ran-

del orders 28 genres in five manuscript groups with neu-

matic notations: León, Rioja, Silos, Toledo A and Toledo 

B. The most important manuscript is the León antiphoner 

(E-L 8) dating from the early tenth-century. Unlike Gre-

gorian chants, many Mozarabic chants appear in only one 

or two manuscripts, often with much greater differences 

in musical detail than in Gregorian chant. Only a few 

dozen relatively simple melodies have been found in 

pitch-readable notation. Some scholars, however, have 

shown melodic relations with other chant traditions for 

some specific Mozarabic chants (Levy, 1998). Therefore 

we have compiled a data set with preserved medieval 

melodies, as a base for the construction of melodies for 

the lost Mozarabic chant (Van Kranenburg & Maessen, 

2017). 

 Although melodic information is virtually absent, the 

neumatic notation of the Mozarabic rite sketches the con-

tours of the melodies. From note to note we can mostly 

see if the melody goes up or down (Rojo & Prado, 1929). 

An elementary way to represent this contour information 

is using six letters: h a note higher than the previous note; 

l a note lower; e a note of equal pitch; b higher or equal; 

p lower or equal; o a note with unclear relative height. 

Figure 1 shows the beginning of the second part of one of 

Levy’s chants; the sacrificium Sanctificavit Moyses altare. 

Shown at the top of the figure are three lines from the 

León antiphoner. Following that, three parallel lines show 

the transcription of the neumes to contour letters and two 

different melodies produced with our two methods for 

chant reconstruction. Encircled in the manuscript image 

is a repeated intra-opus neumatic pattern that should be 

instantiated by the same musical material. In the contour 

string and melodies the corresponding patterns are under-

lined. Capitals in the string indicate notes of the patterns. 

 It should be noted that the context of this particular 

pattern is interesting for the comparison of chant tradi-

tions. The chant text is a narrative from Exodus (Ex. 

34:2-5): The Lord said to Mozes “come up to me unto 

mount Sinai” (ascende ad me in montem Syna). Then 

Mozes went up unto the mount (ascendit in montem) and 

the Lord descended towards him (descendit ad eum). The 

three words “ascende”, “ascendit” and “descendit”, share 

the pattern. This pattern is also part of two extended pat-

terns; the first shared by “ascende” and “ascendit”, the 

second by “ascendit” and “descendit”. So here the music 

can be seen to express the “meeting” of the Lord and 

Mozes, something hardly imaginable in other chant tradi-

tions. A closer look may even reveal a metaphor for the 

idea that Mozes is in God’s “hands”: “His” words and 

deeds, “ascende”, and “descendit”. Misunderstanding of 

this kind of sophistication may well have been used in the 

repression of the Mozarabic rite in the late eleventh cen-

tury when, in the ongoing power struggle between the 

advocates of the different rites, the supposed heretical 

character of the Mozarabic rite was repeatedly stressed by 

Pope Gregory VII (Vones, 2007). In the parallel chants of 

the surviving traditions these details are blurred, com-

pletely absent, or at best reduced to different up and down 

movements only.  

2. METHOD 1 

The first method to produce melodies for the lost chant 

has been described in detail in a previous paper (Maessen 

& Van Kranenburg, 2017) and is reviewed here briefly. 

In search for a melody of a specific lost chant, we first 
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transcribe the chant notation to a string of contour letters. 

Then we divide this string into segments, guided by the 

grammatical structure of the chant. Our method imple-

mented a brute force string matching algorithm that 

searches all matches of all segments of the contour string 

in all chants of the data set, allowing for a variable num-

ber of n skips in all segments. The algorithm then lists the 

best matching melodies of the data set conforming to a 

computed evaluation score S. This score is defined by the 

positions of the matches of the segments in the data set 

melodies and the number n of allowed skips. 

 In order to produce a singable melody for the lost 

chant we may need three additional steps using this 

method. The first combines the matches of the segments 

in the best data set melody to one melody for the lost 

chant. For some of the segments we may need to increase 

the number of allowed skips n, or shorten the segments. 

In a second step we may give repeating patterns (intra-

opus patterns, as appearing in the early notation of a sin-

gle chant) the same pitch sequences. The third step con-

sists in rehearsing the chant and correcting some of its 

“uncharacteristic” pitches. Some segments may be in 

need for transposition, and especially at the borders of 

segments melodic lines sometimes need to be smoothed.  

 With this method we produced over 100 chants, some 

of them still on the internet (Gregoriana Amsterdam, 

n.d.). Although some of these chants are considered beau-

tiful, there are some problems (see Section 4).  

3. METHOD 2 

The basis for the second method is the construction of 

statistical models of a coherent corpus, and then “invert-

ing” this model to generate new music having high prob-

ability according to the model (Conklin, 2003). A statisti-

cal model is trained on a data set of 137 Gregorian offer-

tories, comprising a total of approximately 65,000 notes. 

Given the size of the corpus, it was possible to create a 

bigram model of pitches that does not have data sparsity 

problems. Following model training, a sequence of 

pitches can be generated based on the probabilities de-

rived from the data set by performing statistical Gibbs 

sampling and settling on sequences at the high end of 

probability space.  

 To capture the specified positional constraints and 

also intra-opus repetition, Conklin (2016, 2017) intro-

duced an important improvement to statistical generation 

that makes it appropriate for the production of melodies 

for the lost chant at hand. Template pieces are encoded 

using a semiotic pattern, which specifies constraints on 

individual notes and also equality relations between seg-

ments of notes. Sequences are sampled from the trained 

statistical model while ensuring that the semiotic pattern 

is maintained for each sample. Positional constraints, the 

most important facet of the pattern in the case of chant 

reconstruction, are given by the string of contour letters 

referred to in Section 2 above and illustrated in Figure 1. 

Repeating (intra-opus) contour patterns are generated as 

patterns of equal pitches, for example, see the three (over-

lapping) repeated patterns in capitals in Figure 1. These 

intra-opus patterns are annotated manually for each tem-

plate. 

 Given a model and a semiotic pattern, a large space of 

sequences is sampled in two steps. In the first, an iterative 

random walk (Conklin, 2016) is used to create an initial 

solution compatible with the semiotic pattern. In this step 

the contour pattern, using the specified ambitus desired, 

is compiled into further positional constraints that make 

the search for an initial solution feasible.  For example, if 

an h contour is at a position, it is clear that the previous 

position cannot be at the maximum height of the ambitus. 

 Following the successful production of an initial solu-

tion, Gibbs sampling is performed: positions are selected 

uniformly over the semiotic pattern variables, and all new 

possible notes are considered in that position. A new se-

quence is then sampled from the distribution of pieces 

with successfully substituted notes. Unlike standard 

Gibbs sampling, here some preference is given to sam-

pling sequences that increase rather than decrease the cur-

rent sequence probability. In our implementation, we 

have found that, for most templates, after approximately 

100,000 iterations the highest probability solutions no 

longer change. 

 Until now we successfully generated several chants 

using positional and intra-opus patterns together. Some 

of these melodies we performed in videos with the early 

notation running along (Gregoriana Amsterdam, n.d.). 

We also successfully experimented with other constraints, 

such as the ambitus (different for different parts), and the 

first and last (and other) pitches of the chant. 

4. COMPARISON 

As Figure 1 and Gregoriana Amsterdam (n.d.) may show, 

both methods are able to generate singable melodies. Of 

importance here, however, are the differences: 

1. Due to the segmentation and the working hypothesis of 

the existence of (nearly) identical matches of segments to 

parts of existing melodies, Method 1 seems infeasible 

without manual editing of the constructed melody. In 

Method 2 manual editing is not necessary because, unlike 

Method 1, there are no “problematic” borders between 

segments. Any sequence following the semiotic pattern 

will be a solution to the contour and intra-opus pattern 

specification.  

2. The score S of Method 1 provides a good criterion for 

the relation with the lost melody. When S is higher than 

about 70 %, Method 1 also indicates serious candidates 

for historically related melodies in the data set. However, 

until today, Method 1 seldom produced a score above 40 

%. Method 2 is only able to generate general characteris-

tics about probabilistic space as it uses only a low order 

statistical model.  
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Figure 1. A passage from Sanctificavit Moyses: neumatic notation (E-L 8; 305r13), contour string and two melodies. 
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3. In Method 1 we did not yet fully use the information 

included in the contour string about syllables, words and 

sentences. In Method 2 this information is automatically 

processed as part of the statistical model.  

4. The more constraints we introduce to Method 1 (pat-

terns, ambitus, specific pitches), the more problematic it 

will be to construct a melody, unless the desired melody 

(or a very close variant) is included in the data set. In 

Method 2 the only things of importance are the sampling 

algorithm and the statistical model used. 

5. In order to construct a considerable self-consistent cor-

pus of chants it will be necessary to produce inter-opus 

patterns of equal pitches, i.e. to generate patterns occur-

ring in different chants and having equal sequences of 

pitches. Given its reliance on segmentation and the facts 

relating to its general hypothesis this seems almost im-

possible in Method 1. However, we are already success-

fully experimenting with this in Method 2. 

5. CONCLUSION AND FUTURE WORK 

The overall impression is that both methods are able to 

generate singable melodies. The second, however, even 

in this stage, seems less laborious. No manual editing is 

needed and the generation of intra-opus repeating pat-

terns is implicit in the method.  

 A fascinating point opened up by our research is the 

role of overfitting in statistical models. Usually this is 

viewed negatively as the inability of a model to general-

ize past the known data. However in the chant reconstruc-

tion problem there are cases where overfitting is desired, 

as for example when a template melody may contain in-

ter-opus patterns (seen in another chant). These patterns 

should be used when available. Thus high on our agenda 

is the consideration of how to handle inter-opus recurring 

patterns. In summary Method 2 seems not only the best 

option to generate unique chants, but also to construct a 

self-consistent repertory agreeing with the early notation, 

something that seems hardly feasible with the first 

method. And, of course, this last option is high on our 

agenda.  

 Presently we are, therefore, working on the imple-

mentation of inter-opus patterns. We are also construct-

ing some cross-validation cases: chants where neumes 

and corresponding pitches are known, e.g. the Gregorian 

chant offertory Scapulis suis (Gregoriana Amsterdam, 

n.d.). There are other items on our agenda. Pattern dis-

covery algorithms might be used to find intra-opus pat-

terns in the templates, thus automating the laborious step 

of hand annotation of a template for patterns. To create 

large collections of reconstructions for many templates 

this seems even necessary. In Method 2 it will be neces-

sary to handle church modes and ambitus constraints: 

these may vary throughout the piece and will require 

some broad segmentation of the template. Also in 

Method 2 the reference of patterns to the conservation of 

exact pitch sequences seems unnecessarily strict and we 

plan to allow any feature (intervals, neume shapes) to be 

conserved between pattern instances. Until now Method 2 

only made use of a single tradition. Since we know that 

several traditions were related to the lost chant (Levy, 

1998), it will be necessary to handle the differences be-

tween these traditions in Method 2. We are working on 

ways to define the relations between the lost chant and 

these traditions. Finally, until now we only used six con-

tour letters. However, the neumatic information in the 

León antiphoner is much richer. Since the meaning of 

Mozarabic neumes is similar to Gregorian neumes and 

we do know the Gregorian melodies, it will be wise to 

include still another data set in our algorithms: Gregorian 

chants in pitch-unreadable neumes. 
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ABSTRACT 

In the paper, we explore the performance of deep residual 
convolutional networks for labelling ethnomusicological 
field recordings. Field recordings are integral documents 
of folk music performances captured in the field, and typ-
ically contain performances, intertwined with interviews 
and commentaries. As these are live recordings, captured 
in non-ideal conditions, they usually contain significant 
background noise. Labelling of field recordings is a typical 
step in segmentation of these recordings, where short 
sound excerpts are classified into one of a set of predefined 
classes. In the paper, we explore classification into four 
classes: speech, solo singing, choir singing (more than one 
voice) and instrumental performances. We describe the da-
taset gathered for the task and the labelling tools developed 
for gathering the reference annotations. We compare dif-
ferent input representations and convolutional network ar-
chitectures based on residual modules for labelling short 
audio segments and compare them to the more standard 
feature based approaches, where an improvement in clas-
sification accuracy of over 5% was obtained. 

1. INTRODUCTION 

Field recordings are documents of folk song and music 
performances taken “in the field”, usually in environments 
familiar to musicians. They aim to preserve entire record-
ing sessions and the context in which they were recorded, 
and are thus a mix of performances and speech, which of-
ten consists of interviews with musicians. Since recordings 
are taken in everyday environments, they are often very 
noisy due to background noise (e.g. people talking, doors 
closing etc.), poor recording equipment or the recording 
environment itself. Segmentation of field recordings is one 
of the first tasks that ethnomusicologists perform when 
studying the recorded materials, as they separate the con-
tents into different units, such as speech or individual per-
formances. It is also a prerequisite for computational anal-
ysis of field recordings. 

In the audio processing and music information retrieval 
research fields, automatic segmentation of recordings is a 
well-studied task. It is important for segmentation of 
broadcast news and radio broadcasts, where recordings are 
usually separated into speech and music units, as well as 
in other domains such as for removal of non-speech parts 
in speech recognition systems. Most approaches either first 
label short segments of the recording into a set of classes 

(e.g. speech, music) and then find segment boundaries 
(Lie, Stan, & Hong-Jiang, 2001; Williams  & Ellis, 1999), 
or first find the segment boundaries and later apply classi-
fication into classes (Panagiotakis & Tziritas, 2005; 
Tzanetakis & Cook, 1999). Pikrakis et al. (2008) used a 
three step approach: first they identified regions in the sig-
nal which are very likely to contain speech or music with 
a region growing algorithm. Then, they segmented the re-
maining regions with a maximum likelihood model and fi-
nally, a boundary correction algorithm was applied to im-
prove the found boundaries. Marolt (2009) also used a 
three step procedure where signal fragments were first la-
belled into five classes, then candidate boundaries estab-
lished and finally the actual boundaries estimated with a 
maximum-likelihood criterion. 

More recently, within the Mirex 2015 Music/Speech 
Classification and Detection task ("Mirex 2015 Results," 
2015), 9 authors submitted their algorithms for classifying 
recordings into either speech or music, and for finding seg-
ment boundaries in a set recordings, which also included a 
number of field recordings. The algorithms were very suc-
cessful for the first task, reaching 99.7% accuracy (Lidy, 
2015), which might indicate that the task of music/speech 
classification is solved, however it is more likely that the 
evaluation dataset was too basic and did not include 
enough challenging cases for the algorithms. This is al-
ready obvious if we observe results of the same approaches 
for the second task, where frame-based F1 measure of the 
best system dropped to 89.4% (Marolt, 2009), while the F1 
score of finding segment boundaries was only at 40.3%.  

In the past years, deep learning had become the preva-
lent approach for classification problems in image and au-
dio domains. It is therefore not surprising that it was also 
applied to segmentation of audio recordings. The afore-
mentioned best music/speech classifier at Mirex 2015 by 
Lidy (2015) was based on convolutional neural networks. 
Similarly, Kruspe et al. (2017) use deep networks to dis-
criminate between speech and music sections in broadcast 
signals and reports over 99% F1 measure for speech and 
91% for music discrimination. Authors from Google 
(Hershey et al., 2017) compared a number of deep archi-
tectures for large-scale audio classification on tagged au-
dio from the YouTube-100M dataset, as well as on a large 
scale dataset of labelled sound clips from YouTube videos 
– Audio Set (Gemmeke et al., 2017).  
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In this paper, we explore deep neural networks for la-
belling ethnomusicological field recordings. Unlike broad-
cast recordings, field recordings are more challenging to 
label and segment due to their noisy nature. In contrast to 
most speech/music discriminators, we aim to separate be-
tween four rather than two classes: speech, solo singing, 
choir singing (more than 1 voice) and instrumental record-
ings. We chose the four classes as they are very representa-
tive for a number of field recordings from different regions 
that we analyzed. Also, in contrast to most previous work, 
we do not aim to segment (clean) broadcast recordings, but 
field recordings, which may be of varying quality, as al-
ready described previously. We describe the architecture 
used for classification, the dataset used and our first re-
sults.  

2. DATASET 

Exploration of field recordings revealed four major classes 
of recordings that appear in a variety of cultures: solo sing-
ing, choir (more than one voice) singing, instrumental per-
formances, and speech. Our goal was therefore to classify 
field recordings into the four classes, and not to limit our-
selves to just speech and music. To train deep learning 
classifiers, large datasets are needed - the larger the better 
as recent deep learning experiences show. Apart from the 
Audio Set (Gemmeke et al., 2017), which is an excellent 
large-scale audio classification dataset, there are few suit-
able datasets available for the task. In the presented work, 
we decided not to begin with the Audio Set, as its catego-
ries are not ideal for our purpose; for example, there is no 
solo singing category, examples labeled with singing are 
mostly accompanied by music, while musical genres are 
mostly oriented towards popular music genres (pop, rock 
etc.). 

We therefore gathered short excerpts from a variety of 
recordings from ethnomusicological (and related) archives 
that put their collections online in recent years. The 
sources include: the British Library world & traditional 
music collection 1 , Alan Lomax recordings 2 , sound ar-
chives of the CRNS3 and a number of recordings from the 
Slovenian sound archive Ethnomuse and the Norwegian 
national library, which are not available online, but were 
made available to us by ethnomusicologists with the re-
spective institutions. These field recordings were aug-
mented by the well-known GTZAN music/speech collec-
tion and the Mirex 2015 music/speech detection public da-
taset.  

Altogether 7,000 5 second long excerpts were ex-
tracted from these sources. To manually label them into the 
four target classes, we enhanced the web-based audio an-
notator tool (Cartwright et al., 2017), so that it can be con-
trolled exclusively by the keyboard. This enabled fast 

                                                           
1 https://sounds.bl.uk//World-and-traditional-music 
2 http://research.culturalequity.org/home-audio.jsp 
3 http://archives.crem-cnrs.fr/ 

multi-user annotation of audio excerpts into the four cate-
gories, augmented by three additional categories of “voice 
over instrumental”, “noise” and “not clear”. The latter was 
to be applied when the audio clip was either too noisy to 
be recognized or contained too many short fragments of 
different types of materials, so that it was difficult to select 
a single label. The annotator’s goal was namely, to select 
a single label for the five second clip, where clips were 
randomly chosen from the set of unlabeled clips for each 
participating annotator. The user interface was kept very 
similar to the original audio annotator and is shown in Fig-
ure 1.  

 

Figure 1. The annotation interface. 

3. EXPERIMENT 

Our goal was to evaluate the performance of deep net-
works for the classification task at hand. All the audio ex-
cerpts were first downsampled to 22050 Hz, mixed to a 
single channel and normalized.  

We compared several input representations for the 
task: 46 ms FFT frames (252 bins between 50 and 7000 
Hz) and 64 channel mel-scale spectrograms (50-8000 Hz) 
extracted from FFT frames of 23ms, 46 ms, and 92ms. We 
log-scaled all representations (adding 1e-5 before applying 
the logarithm) and used 1 or 2 second long feature blocks 
with 50% overlap as network inputs. Stacking of different 
resolution frames (23ms, 46ms, 96ms) was also tested. 

We chose convolutional deep networks as our main 
classification tool and focused specifically on residual net-
works (K. He, Zhang, Ren, & Sun, 2015), which previ-
ously demonstrated good performance for a variety of im-
age, as well as audio-based tasks. The main feature of re-
sidual networks are their shortcut connections that imple-
ment identity mappings and enable convolutional blocks 
to learn residuals between the underlying mapping of fea-
tures and the input.  

The overall network architecture is shown in Figure 2. 
The input layer is first processed by 𝑚 𝑛𝑥𝑛 convolutions, 
optionally enhanced with 𝑚 𝑛𝑥𝑛  dilated convolutions 
with rate 2, to expand the receptive field of filters. A max 
pooling layer was added to reduce the size of feature maps, 
followed by 𝑝 resnet v2 blocks (Kaiming He, Zhang, Ren, 
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& Sun, 2016), where the size of feature maps is halved (in 
each dimension) within each block and the number of fil-
ters doubled. The batch normalized output of resnet blocks 
is gathered by 1x1 convolutions into a 2D feature map. The 
map is finally processed by a small fully connected layer 
with four outputs, where the softmax activation yields final 
class probabilities. We tested different values for the de-
scribed parameters, which we outline in section 4. Batch 
normalization, as well as l2 regularization were used for 
regularizing the network, to avoid overfitting. To intro-
duce non-linearity, we compare the performance of stand-
ard ReLU activation functions with exponential linear 
units ELU (Clevert, Unterthiner, & Hochreiter, 2015).  

 

 

Figure 2. The network architecture. 

Three-fold cross validation was used to assess the per-
formance of each network, where 2/3 of the dataset was 
used for training, the remaining 1/3 for testing, and the pro-
cedure repeated three times. The networks were trained 
with minibatches of 128 examples. For each audio exam-
ple, the block of input features was drawn from a random 
location within the audio, so that for each epoch, the fea-
ture blocks used to train the network differed in their loca-
tion within training files. Such time translation diversifies 
the limited training data available and improves perfor-
mance, as was also demonstrated elsewhere (Jansen et al., 
2017). For testing, the entire test files were used. 

Stochastic gradient descent was used for training over 
500 epochs, and the learning rate set to decay from 0.1 by 

0.75 each 500 steps. The experiments were implemented 
in Tensorflow. 

4. RESULTS 

4.1 Input representation 
A comparison of different input representations is shown 
in Table 1. We report average accuracy over all classes 
over the three cross-validation splits in the last column. 
The same network architecture (described in 4.2) was used 
for all comparisons. We compare two different input rep-
resentations: mel compressed spectrograms vs. FFT, two 
different block sizes (1.1 vs. 2.2 second long blocks of in-
put features), three different window and two different step 
sizes for FFT calculation.  

We see a significant difference only in the choice of 
block sizes: features covering 1.1 seconds of audio give 
around 2% lower accuracy as 2.2 second blocks, indicating 
that it is beneficial for the network to have more context in 
order to distinguish between the categories. Indeed, even 
when listening to, for example speech vs. solo singing, in 
many cases one second of audio cannot not reveal the cor-
rect category. This is even truer for field recordings, which 
are typically amateur performances, many times by older 
people, include strong dialects etc. There are no significant 
differences between different window and step sizes in 2.2 
second blocks. Stacking of different window sizes also 
does not improve the performance significantly. We there-
fore decided to use 2.2 second blocks of 64 channel mel 
spectrograms calculated from FFT frames of 46 ms with 
23ms step size (network input size 96x64) in our further 
experiments. 

 

feature 
block  

(s) 
step  
(ms) 

window 
(ms) 

input  
size 

accuracy 

mel 1.1 12 12 96x64 0.861 
   23 96x64 0.868 
   46 96x64 0.868 
   12,23,46 96x64x3 0.875 
 2.2 12 12 192x64 0.882 
   23 192x64 0.887 
   46 192x64 0.887 
   12,23,46 192x64x3 0.891 
  23 23 96x64 0.886 
   46 96x64 0.890 
   92 96x64 0.891 
   12,23,46 96x64x3 0.895 

fft 2.2 23 46 96x252 0.892 

Table 1. A comparison of different input representations. 

4.2 Network architectures 
The overall network architecture was described in section 
3. We tested the influence of the following parameters on 
network performance: the number of filters in the first con-
volutional layer (2, 4, 6, 8), the sizes of these filters (4, 6, 
8, with or without stacked dilated convolutions of the same 
size), the number of resnet blocks (3, 4, 5) and the activa-
tion function (ReLU vs ELU). Table 2 lists the key results. 

The networks are not very sensitive to the size of input 
filters. When the number of layer one filters 𝑚 increases 
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up to 6 filters, performance improves, while higher num-
bers do not have a large effect. Adding an additional set of 
dilated filters (rate=2) helps, although this also increases 
the number of network parameters. The optimal number of 
resnet blocks was determined to be 4, an additional block 
does not add much to accuracy, but increases the number 
of network parameters substantially. The ELU activation 
function seems to improve training (consistently higher ac-
curacy by approx. 1%) over ReLU.  

 
activa-

tion 
dilated 

nxn L1 
size 

m L1  
filters 

p resnet 
blocks 

accuracy 

elu yes 4 6 5 0.893 
    4 0.890 
    3 0.882 
   2 4 0.874 
   4 4 0.881 
 no 4 6 4 0.883 

relu yes 4 6 4 0.882 

Table 2. Comparison of network architectures. 

Based on the evaluation, our final network architecture 
uses ELU activations, 6 4x4 convolutions stacked with 6 
dilated 4x4 convolutions (rate=2) on the first layer, fol-
lowed by 4 resnet blocks. The final fully connected layer 
is small (24x4) and has no hidden layer, but directly maps 
into the four outputs. The entire network is not very deep, 
as we have a limited amount of training data, and contains 
172,936 trainable parameters. 

4.3 Comparison to other approaches 
To put the obtained results into perspective, Table 3 lists 
the performance of three other approaches on the same da-
taset (also using 3-fold cross-validation):  
 a standard deep convolutional network with two 3x3 

convolutions (one with stride 2) in place of each resnet 
block (no shortcut links), trained on the same mel-spec-
trogram input data representation;  

 a multilayer perceptron with one hidden layer of 16 
neurons trained on VGGish (Hershey et al., 2017) fea-
tures extracted from the data. VGGish are audio classi-
fication features extracted from a VGG-like deep 
model trained on a large YouTube dataset and made 
available by Google. Input to the MLP consisted of two 
consecutive 128-dimensional VGGish vectors, each 
summarizing 1 second of audio; 

 a simple logistic regression model trained on hand-
crafted features, as described in (Marolt, 2009). 
 

model 
number of  
parameters 

accuracy 

proposed resnet 172,936 0.890 
standard deep 166,556 0.862 
MLP on VGGish 4,180 0.881 
logistic regression 51 0.837 

Table 3. A comparison to other approaches. 

                                                           
1 http://lgm.fri.uni-lj.si/portfolio-view/sefire/ 

The proposed model outperforms the others. It has the 
highest number of trainable parameters, however care has 
been taken to avoid overfitting by including batch normal-
ization and l2 regularization during training, as well as us-
ing 1/3 of the dataset for testing at each run, so it is safe to 
assume that its performance is realistic for a wide variety 
of materials. VGGish features come close second. 

An analysis of errors showed many logical mistakes, 
which can be attributed to several factors. First, some of 
the recordings are very noisy and even a human listener 
can have some difficulty to discern the contents. Such re-
cordings were often mistakenly classified as instrumentals, 
as the noise was considered part of the performance.  

The confusion matrix in Table 4 shows that many mis-
takes are made between neighboring classes: solo singing 
is misclassified as choir singing or speech, choir mostly as 
solo, instrumentals as choir or speech as solo. Some con-
fusions may be due to the particularity of the contents, e.g. 
some short excerpts of dialectal speech may sound very 
much like singing. Some mistakes are not really mistakes 
– an excerpt may be correctly classified, and wrongly la-
belled. Namely each five second audio clip in our dataset 
is only labelled with a single class, even though parts of it 
may contain another class. An example is a choir record-
ing, where some parts are sung solo and then evolve into 
choirs. As the network only classifies short 2 second ex-
cerpts, it may correctly label the solo part as solo, however 
the entire example is labelled as choir, so this is considered 
a misclassification. Choir parts sung in unison are another 
case that is difficult to classify – they are labelled as choir 
singing in our dataset, but may sound very similar to solo 
singing. 

The final trained network is integrated into the publicly 
available SeFiRe tool for segmentation of field record-
ings1. 

 predicted 
solo choir instr. speech 

tr
u

e 

solo 0.87 0.07 0.01 0.05 
choir 0.06 0.89 0.02 0.03 
instr. 0.02 0.04 0.92 0.02 
speech 0.06 0.01 0.01 0.92 

Table 4. The confusion matrix. 

 

5. CONCLUSION 

In the paper, we demonstrated the performance of a me-
dium sized deep convolutional network applied to classifi-
cation of field recordings into four classes. We also pro-
vide a comparison of different input representations and 
network architectures for the task. The database used and 
the final trained model will be made available to the com-
munity.  

In our future work, we will aim to enhance the dataset 
with additional sources of field recordings. We will also 
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make use of the Audio Set, currently the largest annotated 
audio classification dataset, to enlarge our training data. 
Our second goal is to increase the number of target cate-
gories into typical instrument categories and introduce 
non-exclusive categories (e.g. singing over instrumental), 
which are currently labeled as instrumentals.  
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ABSTRACT

The interrelation of playing and dancing is central for understand-
ing performance practice in Swedish folk music, as it plays an
important role for the metric and rhythmic qualities of spelmans-
musik, and playing for dancing is considered a key competence
for musicians in this tradition. As part of a research project into
performance practice, sound, video and motion capture (MoCap)
data were recorded from live performances of three musicians
and two dancers in different combinations. In addition, dancing
to two recordings by an influential musician and to live and pre-
recorded beat clapping was recorded.

This paper incorporates measurements and visualizations of
performance data in combination with performer participation
and interviews. As a starting point for our project, we focus on
metric qualities in a historical recording, and on the dance move-
ment patterns to a Swedish polska style with asymmetrical beat
patterns. For this paper - as a preliminary investigation into the
material - the recordings of one dancer dancing to an isochronous
clapped beat, and to a recording by an influential player have been
used for comparison of a central movement pattern in dancing.
The findings show that asymmetric beat patterns contained in the
recording cause wider variation among the movement patterns
when compared to the patterns observed to isochronous clapping.
Considering the performers reactions towards using MoCap as a
tool for viewing and discussing their performances, we propose
further investigations by combining scientific, ethnomusicologi-
cal and artistic research methods into the research of performance
practice in folk music.

1. INTRODUCTION

Triple-meter music forms like the Swedish polska and the
Norwegian springar/pols/springleik are central in folk mu-
sic and dance traditions in the Nordic countries. In Swe-
den, historical references to ”polish dances” date back to
the 16th century (Gustafsson, 2016) and these music and
dance forms have been a main focus for collectors and re-
searchers of folk music. The term polska encompass local
substyles and variations, but can for the common variant
of rundpolska generally be described as a couple dance in
triple time including two parts: försteg, most commonly
a couple walking forward side by side, stepping on beat
one and three, and, second, omdans (turning), where ”the
couple is rotating clockwise around its own axis and at
the same time anti-clockwise around the room” (Nilsson,
2017). In this, one turn of the clockwise rotation is com-
pleted over one measure.

Research on meter and rhythm in polska and related
music - including some suggestions for typologies for mu-
sic and dance types - took into account various aspects of

music and dance: patterns of metrical markings, rhythmi-
cal variations, melodic rhythms, articulations and dance
movements of the different styles. Styles that include asym-
metric beat patterns, like some Swedish polska styles and
Norwegian springar/pols/springleik styles have attracted spe-
cial attention (Sandvik, 1943; Groven, 1971; Ahlbäck, 1989;
Kvifte, 1999; Blom, 1993; Johansson, 2009; Haugen, 2017).
Johansson (2017) discusses empirical research approaches
on asymmetrical rhythm including suggestions for future
research and points at the lack of measurement and analy-
ses of different styles, different performers and situations
(e. g. playing for dancing) and the lack of experimental
studies including the performers view on dance interaction,
timing, synchronization, learning practices etc.

Ahlbäck (1986, 1989) has formulated a Folk Music The-
ory approaching meter and rhythm in Swedish folk mu-
sic, which has been a major contribution for the emerging
folk music educations in Sweden (Ahlbäck et al., 2009).
Ahlbäck (2003) discussed asymmetric beat in the polska,
with reference to folk music collector Einar Övergaard’s
(1871-1936) ambiguity on where to place the downbeats in
his notations of asymmetric polska tunes in Elverum, Nor-
way (Övergaard & Ramsten, 1982). Ahlbäck exemplified
how different metrical interpretations can be achieved by
ways of articulation and foot-tapping and discussed asym-
metric beat patterns in relation to melodic/rhythmical struc-
tures in some early Swedish and Norwegian polska record-
ings.

The Norwegian ethnomusicologist Blom’s pioneering
approach to draw curves depicting the typical patterned li-
bration of the body´s center of gravity (sviktkurva) in dif-
ferent dances, is a well-established concept among folk
dancers and folk dance researchers in the Nordic coun-
tries. Libration patterns for various Norwegian folk dances
were illustrated in Blom (1993). These were obtained from
Blom’s observations - as an experienced fiddler and dancer
- of step combinations and the oscillations of rising and
falling movements (thesis and arsis) in the different dances.

Haugen (2017) used Motion Capture (MoCap) record-
ings of Norwegian Telespringar performances to explore
the relation in time between vertical oscillation periods -
libration curves - obtained from markers on the dancers
hips with the foot-tapping and body movement of a hard-
ingfela (fiddle) player. Haugen found a stable correlation
between the foot-tapping of the player and the libration
curves of the dancers which was taken as an indication of a
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shared embodied asymmetric meter (long-medium-short).
Haugen also showed that the local minima and maxima
points of the librations were not in synchronization with
the foot-tapping. From this Haugen suggested a modified
libration curve for Telespringar, similar in shape but shifted
in relation to the beats compared to the one suggested by
Blom (1993) - which had the local minima and maxima
points aligned with the beats. Another approach was used
by Mårds (1999), where, as described by Haugen (2014),
dancers were recorded with MoCap while at the same time
moving on force plates used to measure the weight pres-
sure of the steps. The player’s foot tapping was also reg-
istered by a pressure mat but no sound was recorded. This
showed similar results for the shape of libration patterns
as Haugen (2017) and Blom (1993). Bakka (2014) sug-
gested further comparisons of pressure measurements with
libration patterns to determine how these correspond to the
perception of musical beat in the dance. Naveda & Leman
(2010) have suggested a topological analysis for represent-
ing spatiotemporal relations of dance and music gestures in
some popular dance forms.

Haugen (2017) showed that MoCap recordings can of-
fer a useful analytical approach to meter and body move-
ment in Telespringar. However, MoCap studies of other
styles, including polska, remain yet to be presented. As
an additional difficulty, whereas Haugen assumed that the
libration pattern remains constant throughout the perfor-
mance, this is likely not to hold for polska styles with two-
part structures and with a larger variance to the degree of
beat asymmetry.

The present study focuses on a style of polska histori-
cally connected to players and dancers from the region of
Orsa in Dalarna, Sweden. The fiddle player Gössa An-
ders Andersson (1878-1962) is a central influencer for this
style, as indicated by the large number of published record-
ings (Musica Svecia, 1999; Andersson et al., 1998; Musica
Svecia, 1995) and notations (Andersson, 1922; Forslund,
1921) with him as performer. Filmed recordings of the
dance Orsapolska covering a time period of 1947-2000
have been presented in Norman et al. (2000) among which
a silent film of Gössa Anders playing for dancing in 1947
is a key influence for the performers in this study. These
films offer interesting examples on how performances of
Orsapolska have varied, for instance, with the tempo being
considerably lower in the later recordings. The beat pat-
terns in Orsapolska are often asymmetric, but in a different
way than the Telespringar: the beat patterns in Gössa An-
ders’ playing have been shown (Ahlbäck, 1989) to fluctu-
ate between two main beat patterns, one symmetric (three
isochronous beats) and one asymmetric (short-long-medium).
Ahlbäck (1989) has suggested the use of additive time sig-
natures of 9/16 to express these two patterns in music nota-
tion: 3+3+3/16 and 2+4+3/16, respectively. These catego-
rizations of beat patterns should not be regarded as a pre-
scription of precise beat proportions over time, but rather
as perceived categorical proportions between beats, where
in the asymmetrical beat pattern the short first beat being
roughly half the duration of the second beat. These con-

transcr. OM 2018

© 2018 Olof Misgeld

& b 2+4+316

e. = 137

j
Ï Ï Ï Ï #Ï Ï ÏÏ

j
ÏÏ Ï Ï Ï Ï Ï Ï j

Ï
ï
Ï j

Ï Ï . ¼Ï Ï ÏÏ
j
Ï
ï
Ï j

Ï Ï . Ï Ï Ïmm

5

& b
j
Ï Ï #Ï Ï Ï Ï Ï

j
Ï . j

Ï Ï Ï Ï Ï j
Ï
ï
Ï Ï Ï Ï Ï Ï Ï j

Ï Ï Ï Ï Ï Ï ÏÏ
m

m

m

9

& b ï
Ï . j

Ï ¼Ï Ï Ï Ï Ï
ï
¼Ï .

ï
Ï .

ï
Ï .

ï
Ï Ï Ï

Ï Ï Ï Ï Ï Ï Ï
ï
¾Ï Ï Ï Ï Ï Ï Ï

m

14

& b j
Ï Ï Ï Ï Ï Ï Ï Ï Ï j

Ï
ï
¼Ï j

Ï Ï . Ï Ï Ï
j
Ï Ï #Ï Ï Ï ¾Ï Ï Ï Ï

j
Ï . j

Ï Ï Ï Ï Ï
mm

18

& b j
Ï
ï
Ï Ï Ï Ï Ï Ï Ï j

Ï Ï Ï Ï Ï Ï Ï Ï Ï j
Ï
ï
Ï j

Ï Ï . Ï Ï Ï Ï
ï
¼Ï .

ï
Ï .

ï
Ï .m

22

& b ï
Ï Ï Ï Ï Ï Ï ï

Ï . ¼Ï Ï Ï Ï Ï ï
Ï Ï Ï Ï Ï

ï
Ï .Ï .

ï
ÏÏ ¼Ï . Ï Ï Ïmm

26

& b nÏ Ï Ï Ï Ï
4

Ï Ï Ï
j
Ï .
Ï .

¼Ï Ï Ï Ï Ï . Ï . nÏ Ï Ï Ï j
#Ï .

j
Ï .

j
Ï .

j
Ï

Ï Ï Ï ¼Ï Ï Ï
M



30

& b ï
Ï Ï Ï Ï Ï

ï
Ï .Ï .

ï
ÏÏ Ï Ï Ï Ï Ï

Ï
Ï j

Ï n Ï
3

Ï Ï Ï Ï Ï ï
Ï . #Ï Ï Ï Ï Ï . Ï . n Ï Ïm

m

34

& b j
#Ï .

j
Ï . Ï Ï Ï Ï Ï #Ï Ï ÏÏ

j
ÏÏ Ï Ï Ï Ï Ï Ï j

Ï Ï
j
Ï Ï Ï Ï ¼Ï Ï ÏÏ



M

Figure 1: Lorikspolskan played by Gössa Anders, first round.

ceptual categories are mirrored in music notation, as ex-
emplified in Figure 1, and relate directly to the categorical
successive note durations. Kvifte (1999) and Johansson
(2017) questioned the use of the beat ratio of 2:4:3, argu-
ing that it would cause an adaption to a oversimplification
of the asymmetric beat structure among musicians in the
tradition. This would not hold unless musicians used nota-
tion as their only source for interpreting the music, and not
as Ahlbäck (1989) suggested, in combination with other
approaches to musical meter. It could also be questioned
whether such alleged changes in tradition should be as-
cribed to notation systems or for example the emergence of
new cross-genre ensemble forms (introducing instruments
new to the tradition, like percussion and plucked string in-
struments in accompaniment functions).

2. RESEARCH MOTIVATION

Strategies, tools and methods for learning the skills of danc-
ing and playing for dancing have for a long time been de-
veloped in the teaching of performance practice 1 , however
much of this remains tacit or oral knowledge. This paper
is the beginning of a dissertation project on the interac-
tion of musicians and dancers as one key element in per-
formance practice of traditional Swedish folk dance tunes,
(spelmansmusik). The project is part of ongoing research
on performance practice in Swedish folk music where the
performers’ understanding, knowledge and skills are cen-

1 One example in compulsory courses on dancing and playing in Folk
Music Programs at Kungl. Musikhögskolan, Stockholm
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tral for enabling a deeper understanding and formulation
of knowledge. This is attempted by the researchers them-
selves being participants as performers and by perform-
ers contributing to the analysis of their own performance
recordings. The aim is to formulate tools and concepts for
performance practice that will be evaluated through situ-
ated performance practice: in teaching situations and by
extension in performance situations involving music and
dance interactions. Thus, the larger objective of gaining
knowledge on performance practice is approached through
a combination of scientific, folk music theoretical, ethno-
graphic and artistic research methods.

In this project, experimental methods based on MoCap
analysis are applied for measuring and analyzing perfor-
mance and interaction parameters in combination with per-
former interviews. This paper presents only a small part
of the collected body of experimental data, in a prelimi-
nary comparison of the dance movements of one dancer in
two different settings, with the purpose to explore analysis
methods for further use in the research project. The basic
questions that we will address this way are:

1. How far do the libration patterns differ between the
two phases (walking, turning) of the dance?

2. What are the timing characteristics of the non-isochro-
nous beats in the recordings?

3. What insights can be obtained from libration pat-
terns of a dancer, when dancing to a static recording
with strongly varying beat patterns?

In the following, we describe the complete data collec-
tion process in Section 3, and provide subsequently prelim-
inary results from an analysis of part of the obtained data
in Section 4.

3. METHODOLOGY AND DATA

For the recording sessions, an experimental setup similar
to Haugen (2017) was applied. Two dancers and three mu-
sicians were recorded in five different musical setups (de-
scribed below). The recordings were made in the PMIL-
studio at KTH, using an Optitrack Motion Capture record-
ing system 2 of 16 infra-red cameras recording at a frame
rate of 120 frames/second. The motion data were saved to-
gether with an aligned sound recording from the room. All
sessions were in addition to this filmed with two cameras.
The participating dancers were Ami Dregelid and Andreas
Berchthold, both teachers at the School of Dance and Cir-
cus, Uniarts, Stockholm (DoCH) and the Royal College
of Music in Stockholm (KMH). The musicians were El-
lika Frisell, Sven Ahlbäck and Olof Misgeld - all teachers
at the Department of Folk Music, KMH. All dancers and
musicians are experienced performers and familiar to the
style.

2 http://optitrack.com

3.1 Setups

1. The first setup had each dancer dancing solo to a track
of looped beat claps. The loop was constructed from three
slightly different sounding claps, providing an isochronous
three-beat cycle at 138 BPM, the mean tempo of the two
recordings with Gössa Anders used in setup 3. The dancers
were asked to dance in two different ways for the different
takes - one time only walking (försteg) and the second time
with turning (omdans).
2. The second setup had each dancer dancing solo to a
clapped beat, this time performed live by a musician. The
tempo was steady but affected by the interaction as the
musician was watching the dancer during the take. The
dancers were asked to do both walking and turning as they
liked.
3. The third setup had each dancer dancing solo to two
recordings of Gössa Anders: Lorikspolskan and Polska
efter Pellar Anna 3 . Also here the dancers were asked to
variate the dance movements between walking and turn-
ing.
4. The forth setup had each dancer dancing solo to each
of the three musicians. The musicians were all playing the
same two tunes as in the recordings with Gössa Anders.
Here, the dancers and musicians were instructed to play
and dance well together as they would normally do, which
then included both walking and turning in the dance.
5. Finally, the two dancers were dancing as a couple to
each musician, walking and turning together - the most
typical way to dance polska.

The purpose of these different setups was to get a set
of data for comparing the correlation of dance movements
to music in takes that, (a): did or did not involve non-
isochronous beat patterns, (b): did or did not involve mu-
sical context apart from beat markings (clapping), and (c):
did or did-not involve the interaction between musician and
dancer(s). In this paper, a preliminary study of a small part
of this dataset is presented, focusing on the second and the
third setup. This choice is motivated by the goal to doc-
ument the typical libration patterns of the dancers in the
second setup, and the comparison of these patterns with
the ones that emerge from the dance to a recording.

3.2 Annotating the music

The two tunes by Gössa Anders were manually annotated
with beat times using Sonic Visualizer 4 . Beats were placed
by listening for the articulation, (bow turns and/or orna-
mentation) and moving the marker to the start of each note
considered to correspond to a beat. The basis for these
annotations were the transcriptions of the pieces using the
notation software ScoreCloud 5 (Figure 1 shows one exam-
ple). The beat patterns in the two polskas played by Gössa
Anders are, as shown by Ahlbäck (2003) and Johansson
(2009) non-isochronous, and the proportion of each beat
within each bar varies. Using Ahlbäcks model of two main

3 First recorded in 1950 (Andersson, 1950), re-issued on CD (Anders-
son et al., 1998)

4 https://www.sonicvisualiser.org
5 http://scorecloud.com
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Figure 2: Libration pattern, sound envelope and music nota-
tion. Rows of numbers below show beat proportions and measure
length deviations from the mean.

beat patterns all bars were classified into two categories,
determined by the proportion of the first beat to the bar
length, as described in Section 4.1.

3.3 Categorization of the dance

The dance varies between sections of walking and turn-
ing. Walking sections mostly include stepping on the first
and third beat, with the left foot on the first beat, (in some
parts stepping with the right foot on the first beat). Turning
sections include turning with steps on the first (left foot)
and third beat (right foot) and turning with stepping on the
second (left) and third beat(right). The different sections
were classified into the below categories, of which 1 and
2 are used in the following comparison in this paper. This
is motivated by them being the most common movement
patterns in the dance. 6

1. Walking, beat 1 left foot, beat 3 right foot.

2. Turning, beat 1 left foot, beat 3 right foot.

3. Turning, beat 2 left foot, beat 3 right foot.

4. Other less frequent variations of the above.

The classifications are made to allow comparison of marker
movements between different sections of the dance.

4. RESULTS

Figure 2 illustrates an example of the time series obtained
from the data collection. In the upper part of the Figure,
the vertical curve obtained from the marker of the dancer’s
upper back is plotted aligned with the beat annotations.
The notation of the performed tune is provided in the lower
part. Watching the libration in the upper part of the body
of a dancer is a common approach among dance musi-
cians, which motivated our particular choice regarding the
selected marker. The depicted case, however, illustrates
dance to a recording, and not a live music performance.

6 A small sample of the libration pattern from category 3 is depicted
in Figure 2 and differs by containing two oscillation periods per measure
instead of - as in 1 and 2 - three.

Figure 3: The ratio between the first and second beat du-
ration in Lorikspolskan played by Gössa Anders.

In the example, measures 2 and 4 have a shorter first beat
as reflected in the notation. Nevertheless, the libration pat-
terns remain more or less constant throughout the measures
of the depicted example. This implies that in this short ex-
ample no musical interaction between the beat asymmetry
in the recording and the dance could be observed. We will
now further explore this relation between beat asymmetry
and libration patterns.

4.1 Asymmetric beat in the playing of Gössa Anders

The plotted ratio between the beat duration of the first and
second beat in Figure 3 confirms the variation in beat lengths
of Gössa Anders’ playing. As shown, a large proportion of
the first beats align at around 0.6 of the lenght of the sec-
ond beat, close to the 2+4+3 group suggested by Ahlbäck
(1989). Other measures group around a larger ratio, how-
ever smaller than 1, and therefore not precisely isochronous.
In Figure 4 the categorical classification of beats in two
patterns is plotted in a boxchart. The threshold value to
divide between 2:4:3 and 1:1:1 has been placed in the mid-
dle, at a bar proportion of 28 percent for the first beat. The
chart in Figure 4 - which can be considered as a summary
of Figure 3 - confirms a large frequency combination of a
shorter first beat with a longer second beat, and the slightly
shorter first beat in the supposedly isochronous class. Fur-
ther recordings by Gössa Anders need to be examined to
see if this is a general characteristics of his style.

4.2 Libration patterns

The attempt has been to show the libration pattern of the
center of body gravity from the dancers, as an indication of
the embodied metric patterns (Haugen, 2017; Blom, 1993).
To this end, the y-direction of the marker placed on the up-
per back between the shoulders of the dancers was selected
for plotting. The patterns of the libration in walking and
turning are depicted in Figures 5 and 6, for setups 2 (claps)
and 3 (recording), respectively. The subfigures depicting
walking and turning differ regarding their shape in both
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Figure 4: Beat proportions in Lorikspolskan, divided in accor-
dance with the notation, in two beat patterns.

setups. Both figures from walking display a steady pattern
of three oscillation periods within each measure, with the
deepest points close to the first and third beat, where the
dancer is stepping with her full body weight on one foot.
There is also a vertical libration on the second beat in the
turning (Figure 5b), however, smaller than in the walking
in Figure 5a. A possible explanation of this could be the
dancer - when turning - putting more emphasis to the hori-
zontal rotation of the body than to the vertical libration on
the second beat. The libration patterns to the clapping in
Figure 5 are more coherent, while the patterns of dancing
to the recording in Figure 6 are more varied and shifted in
time. In Figure 5a, where the dancer is moving to the clap-
ping, the second minima of the librations are slightly after
the marked isochronous beat, whereas in the dancing to the
recording Figure 6a the second minima are partly before
the isochronous beat, which could indicate that the dancer
relates to the variations in asymmetric beat patterns. To
further address the question of the correlation between li-
bration patterns and asymmetric beat variation, the record-
ings with live playing will be analysed in future work.

4.3 Interviews with performers

During the recording sessions and when watching their
performances in the Motive software 7 , dancers and mu-
sicians were asked to comment on their performance. The
performers expressed that watching their performance, us-
ing the possibilities to view from different angles and fol-
low marker movements by assigning tails to the markers,
was highly interesting, exciting and informative. Further-
more, watching performers as skeletons in the graphical
rendereding instead of watching a conventional film made
it easier to focus on the movement. This triggered reflec-
tions and comparisons with concepts for describing and
thinking about movements. In specific the observations of
the variations in Figure 6a and Figure 6b correlate with
the interview statement by Dregelid (2018) that ”her ex-
perience was that she was not dancing with him (Gössa
Anders)”. At the time of the recording Dregelid said it
might have been easier if Gössa Anders would have been

7 http://optitrack.com/products/motive/

(a) Walking

(b) Turning

Figure 5: Libration patterns from the dancing to a clapped beat.

present in the room, so she could have watched his body
movements while dancing. Further comparisons with the
live recordings that contain musicians and dancers in in-
teraction would be needed to address the question of how
the dance movements correlates with non-isocronous beat
patterns in realistic settings.

5. CONCLUSION

The accurate description of asymmetric beat patterns in
polska music is a challenging task that may not be suffi-
ciently addressed through the analysis of historical record-
ings. Recording performances with Motion Capture is as-
sumed to allow for a more detailed analysis, taking into
account bowing movements, bowing patterns and foot tap-
ping. Using Motion Capture to plot libration patterns in
the dancing is proposed as a method for examining how
dancers relate to asymmetric beat patterns. The results in-
dicate that (1) the libration patterns are consistent in shape
inside the different sections of the dance by which they
are assumed relevant for examining how dancers relate to
musical beats. (2) The material confirms the variation in
asymmetric beat patterns in this polska style. Including
more recordings and the recordings with the musicians’
interpretations of the same tunes is assumed to add to the
presented findings on metrical characteristics. (3) The tim-
ing variations in the libration curves obtained from dancing
to a recording with asymmetric beat suggest comparisons
with the recordings of dancing to a live musician. A larger
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(a) Walking

(b) Turning

Figure 6: Libration patterns from the dancing to a recording.

analysis of the correlation of musical events with dance
movements will facilitate a more detailed understanding
of the relation between dance and music in the particular
style. Using MoCap recording in a performer-participating
setting seems from this first attempt rewarding and worth
exploring further as a method for studying performance
practice. In conclusion, the presented study is suggested
as a starting point for further explorations of music and
dance interaction in Swedish folk music.
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University of Ljubljana, Faculty of Computer and Information Science

{firstname.lastname}@fri.uni-lj.si

ABSTRACT

The SymCHM, which was developed for the pattern discovery,
was applied to the music similarity task. It was used as a feature
extractor, unsupervisedly learning repeated patterns on pitch-time
representation, eliminating any additional high-level information.
The output was used in the retrieval, where the model achieved
74.4 % classification accuracy on the Dutch folk dataset. By the
unsupervised aspect of model’s training and the ability to perform
similarity using only the most basic song representation, we find
the results sufficient to further explore the use of the model on
datasets with a low number of additional features and basic music
representations.

1. INTRODUCTION

The concept of similarity in music has been studied in dif-
ferent research areas. The similarity in cognition plays a
significant role in psychological accounts of problem solv-
ing, memory, prediction, and categorization (Holyoak &
Morrison, 2005). Many research topics in musicology are
inherently related to similarity and categorization in music,
e.g. the study of motivic-thematic relations, comparison of
musical motifs, categorization of songs into tune families
and many others (Volk & Van Kranenburg, 2012). Un-
derstanding of the basic processes underlying perception
of musical similarity is necessary for acquiring a deeper
comprehension of music perception in general (Toiviainen,
2007).

The categorization of folk songs into tune families, whe-
re a tune family represents ”a set of folk songs which have
a common origin in history” (Bayard, 1950), also relies on
the similarity. Many current approaches for this task rely
on alignment algorithms. Mongeau & Sankoff (1990) were
one of the first to use alignment algorithms for music, es-
tablishing the basis for several future approaches, employ-
ing the alignment algorithms and profile modeling for clas-
sification and retrieval tasks, e.g. using the pop and rock
songs datasets Bountouridis & Van Balen (2014). Walshaw
(2017) investigated enhancements of the well-established
local alignment algorithms to also classify Dutch folk songs
into tune families.

Bountouridis et al. (2017) used biologically-inspired tech-
niques for MIR tasks. They identified several shared con-
cepts between music and bioinformatics, such as melody
(DNA), oral transmission (evolution), variations (homo-
logues), tune families (homology) etc. and showed that
bioinformatics algorithms are suitable for MIR tasks. (Sav-
age & Atkinson, 2015) also used an adapted alignment al-
gorithm from the field of bioinformatics to classify songs
into four diverse tune families (two English, two Japanese).

Several developed approaches were evaluated on the Du-
tch folk song dataset compiled by Van Kranenburg et al.
(2013). Among the most recent, the alignment approach by
Van Kranenburg et al. (2016) produces the best classifica-
tion accuracy on the Dutch folk song dataset. The approach
models various features of music as substitution scoring
functions, which are incorporated into the Needleman--
Wunsch-Gotoh Gotoh (1982) algorithm. The model em-
ploys several ’viewpoints’, such as pitch, duration, score
time, time in bar, onset, current bar number, current phrase
number, upbeat, current meter, free meter, accented, inter-
onset-interval ratio, normalized metrical weight and the
time position within phrase. Van Kranenburg had ana-
lyzed combinations of these attributes and had discovered
the best results were given by using the pitch and posi-
tion within phrase attributes. Despite the high accuracy,
it requires a considerable amount of time to produce such
attributes for each dataset. Consequently, the majority of
these attributes are usually not available in music collec-
tions. To eliminate the need for expert knowledge, Velarde
et al. (2013) classified Dutch songs using Haar-wavelet fil-
ters. The results are not on par with Van Kranenburg et al.
(2013), but the approach does not require any encoded ex-
pert knowledge.

In this paper, we explore how unsupervised learning
can be used for modeling tune similarities and classifica-
tion into tune families. Specifically, we study the composi-
tional hierarchical model that has been previously applied
to several audio-based tasks, such as chord estimation and
polyphonic transcription (Pesek et al., 2017a) and pattern
discovery (Pesek et al., 2017b), using a modified symbolic
version of the model (SymCHM).

2. METHODOLOGY AND EXPERIMENT

The compositional hierarchical model has been previously
applied to several tasks, including spectral-oriented tasks
of multiple fundamental frequency estimation (Pesek et al.,
2017a) and automated chord estimation (Pesek et al., 2014),
and symbolic-oriented tasks of pattern discovery (Pesek
et al., 2017b). A model able to perform on symbolic music
representations, denoted SymCHM will be used to tackle
the tune family classification problem in this paper.

2.1 Model

The idea behind SymCHM lies in the organizing of fre-
quently co-occurring events into compositions. Starting at
its input, the model observes the statistics of events’ pres-
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ence and the relation between them. For example, if two
events frequently co-occur in a given time window on a
specific interval, both events can be joined into a com-
position. The composition is relatively encoded, mean-
ing, should two events co-occur at one pitch location and
again at a different one, the same composition would be
formed. This procedure is repeated on consecutive lay-
ers. In contrast to the first layer, instead of observing the
input, the model observes co-occurrences of compositions
and forms new relatively encoded compositions on the next
layer, based on the previous layer. In the SymCHM, we
name all compositions parts, similar to nodes in other mod-
els.

Since each part may occur at several locations in a sin-
gle input, such occurrences must be defined by its location
in time and pitch (a single part may occur at two different
pitch heights at the same time). We denote such occur-
rences activations and define their position by their time,
and pitch. The parts learned by the model can be observed
as melodic patterns and their activations as pattern occur-
rences.

Once the model is built, it can be inferred over another
(or the original input). The inference may be exact or ap-
proximate, where in the latter case biologically-inspired
hallucination and inhibition mechanisms enable the model
to find variants of part occurrences with deletions, changes
or insertions, thus increasing its predictive power and ro-
bustness. The hallucination mechanism provides means
to activate a part even when the input is incomplete or
changed. In symbolic music representations, such changes
often occur in melodic variations and ornamentation. The
hallucination enables the model to robustly identify pat-
terns with variations. The inhibition mechanism is also
essential in the SymCHM for removal of redundant co-
occurrences. As the model does not rely on any musico-
logical rules, parts may produce a large number number of
competing patterns. Inhibition may be used to reduce the
number of activations and find the patterns that best corre-
spond to the learned hierarchy.

The SymCHM therefore learns a hierarchical represen-
tation of patterns occurring in the input, where patterns en-
coded by parts on higher layers are compositions of pat-
terns on lower layers. The inference produces part activa-
tions which expose the learned patterns (and their varia-
tions) in the input data. Shorter and more trivial patterns
naturally occur more frequently, longer patterns less fre-
quently. On the other hand, longer patterns may entirely
subsume shorter patterns.

2.2 Experiment

We tackled the melody classification using the SymCHM.
The MTC-ANN annotated dataset 1 was used. The dataset
consists of 360 Dutch folk songs, accompanied by tune
family annotations. Similar to the experiment presented in
Van Kranenburg et al. (2013), we classified the folk tunes
in to tune families using features. To gather the features,

1 Dataset accessible here: http://www.liederenbank.nl/
mtc/

we employed the symbolic version of the compositional
hierarchical model for pattern discovery for this task. The
SymCHM, shown in Fig. 1, was presented by Pesek et al.
(2017b) and was evaluated for the MIREX discovery of
repeated patterns and sections task.

Figure 1: An abstraction of the SymHM’s performance
over a symbolic music representation. Each part has multi-
ple activations (the number of activation is expressed under
each part). Composing parts can partially overlap. While
composing, the parts are joined into a composition by a rel-
ative offset, represented by µ. The activations for the first
pattern for the selected example are shown on the right side
per layer.

The SymCHM can be used for intra-opus task, such as
the mentioned MIREX task, by building a model for each
music piece individually. The model is first built and later
inferred on a single symbolic representation. In the intra-
opus task, the statistical drive behind the model’s building
procedure reflects the frequency of co-occurrences within
a single music piece. It is therefore difficult to compare
the learned patterns due to the difference in models’ hierar-
chies, when comparing multiple music pieces. The music
similarity task is, on the other hand, an inter-opus task. We
have therefore built a single model on several songs. The
compositions therefore still reflect the frequent proximity
of events (i.e. pattern occurrences) within each single mu-
sic piece, but is also regulated by the frequency of such
occurrences across the given input dataset. The model ac-
cepts multiple inputs separately and analyzes them piece
by piece. The statistical nature in the model is invariant
to the length or the number of inputs—it calculates the co-
occurrence of events within a single input and produces
compositions of such events. If a similar co-occurrence of
events occurs in another input, its statistic is added to the
existing composition reflecting the occurrence.

Any symbolic music representation with the following
two features is accepted as an input to the model: as a set of
note onsets (e.g. in seconds) and note pitches (e.g. MIDI
pitch). MIDI format may be used, extracting only these
two attributes; all other attributes, which can be extracted
from the MIDI format (e.g. meter, bar, phrase number
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etc.), are discarded.

Figure 2: The confusion matrix of the tune family classifi-
cation. The reference annotations are represented in rows
(left) and the predicted classes in columns (bottom).

The model was built on the 360 songs of the MTC-
ANN dataset. The songs are categorized into 26 tune fam-
ilies. No annotations were used during the training. The
built model produced a list of discovered patterns across
the input songs. The output was encoded into a feature
vector where each part represented a vector element and
its value represented the sum of activations for the repre-
sented part. The output was encoded into a feature vec-
tor where each part was mapped onto a vector element,
and the value represented the sum of the part’s activations,
as described in the first experiment. The model generated
3750 parts across layers 3–7. The vector values were ad-
justed as described in (Van Kranenburg et al., 2013). For
each element, the values were scaled to have zero mean and
standard deviation of 1. As described by (Van Kranenburg
et al., 2013), the cosine distance was used for compari-
son of vectors. The result of the vector comparison was
a 74.4 % classification accuracy. The confusion matrix is
depicted in Figure 2.

3. CONCLUSIONS

The results are about 20 percent lower when compared
to Van Kranenburg et al. (2013). However, we believe
the results are interesting, considering the fact that a pat-
tern discovery model, relying only on onset-pitch notation,
was used for this task. The model was not specifically
trained or parameter-tuned for this task and was applied
to the dataset without any dataset-specific adjustment. The
model provided compositions of relatively-encoded melodic
patterns learned in an unsupervised manner. In contrast to
several approaches applied to this dataset, no know-how
about the dataset or folk and western music in general was
used in the procedure of patterns which were used for clas-
sification. Nevertheless, such incorporation could also be

beneficial to the proposed model’s results and will there-
fore be further explored in our future work.
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ABSTRACT

This paper explores aspects of rhythmic perception within
the context of traditional Greek music, more specifically
Demotika songs, which display a rich variety of asymmet-
ric rhythmic patterns, i.e. patterns comprising beats of
different durations. A listening experiment with volun-
teer university music students was conducted, in order
to investigate basic questions regarding timing accuracy
and meter structure as perceived by subjects. This study
suggests that identifying accurately rhythmic meter pat-
terns in traditional Greek music is not an easy task, even
among Greek music students, although statistically signif-
icant differences may be observed depending on cultural
background. Statistical analysis also reveals correlations
between elements associated with the difficulty of the task,
such as the degree of agreement between participants, the
response times and the number of times each excerpt was
heard, and musical aspects such as tempo, meter struc-
tures and symmetry/asymmetry of rhythms.

1. INTRODUCTION

Musical time is commonly organized around a hierar-
chic metrical structure, having as most salient metric
level the beat level, also referred to as tactus (Ler-
dahl & Jackendoff, 1983). Most western musics as-
sume an isochronous beat level, and divergences from
isochrony are treated as exceptions or special cases.
In traditional musics from the Balkan and Middle-
East, on the other hand, rhythms commonly feature
non-isochronous metric structures, referred to as ad-
ditive or aksak or asymmetric meters (Fracile, 2003;
Moelants, 2006). Such metric structures are based
on asymmetric beat levels comprising repeating asym-
metric patterns of long and short beats at a 3:2 tem-
poral ratio, such as 5/8 (3+2), 7/8 (3+2+2), 8/8
(3+3+2) and so on; this asymmetric beat level stands
between a lower isochronous sub-beat level and a higher
isochronous metric level (Cambouropoulos, 1997). En-
culturated listeners spontaneously use an asymmetric
tactus to measure time (clapping hands, tapping feet),
since this is presumably the most plausible and parsi-
monious way to organize given rhythmic stimuli from
specific musical idioms. In a sense, asymmetric beat
structures organize time similarly to how asymmet-
ric pitch scales organize pitch/tonal spaces (Fouloulis
et al., 2012, 2013).

†The first author acknowledges the support of FAPESP
grant 2014/25686-5 and CNPq grant 309645/2016-6.

The main driving question behind this study is:
do listeners with different backgrounds perceive asym-
metric rhythms the same way in terms of beat struc-
ture and beat accents? This question entails follow-up
questions such as: are there differences in perceptual
timing accuracy and perceived beat ordering due to
enculturation? The interest in these questions is not
restricted to analytical or psychophysical considera-
tions; empirical data may also aid in developing novel
Music Information Retrieval methods accounting for
both beat asymmetry and subjectively perceived ac-
cents (one such method is proposed in Fouloulis et al.
(2012)).

The main goal of this paper is to present and dis-
cuss experimental data of a listening test dealing with
actual examples of traditional Greek music and the
rhythmic patterns used to represent their metric struc-
ture. This classification experiment was conducted
with volunteer university-level music students in Greece,
in Brazil and in several other countries. Through sta-
tistical analysis of the collected answers it is possible
to have an idea of the difficulty of this classification
task as a function of the types of patterns encoun-
tered in traditional Greek music, of musical aspects
such as tempo, harmony or instrumentation, and of
the cultural background of the participants.

Recent work dealing with Greek rhythmic patterns
include Fracile’s study of aksak structures in Balkan
folklore (Fracile, 2003), mapping the occurrences of
their most common forms, Moelants’ discussion of the
influence of tempo in the ratio between long and short
beats during performance of aksak metres (Moelants,
2006), and Fouloulis, Pikrakis and Cambouropoulos’
investigation on automatic beat-tracking systems when
confronted with asymmetric repertoire (Fouloulis et al.,
2012, 2013), where basic implementation premises, such
as the existence of a steady pulse, fail. In an experi-
mental study motivated by questions similar to ours,
Tekman et al. (2003) compared listeners familiar and
unfamiliar with musical idioms that frequently use
asymmetric meters in a recognition task, in which mu-
sicians and non-musicians classified pairs of symmet-
ric/asymmetric/irregular meter structures as same or
different; their results did not provide support for the
existence of schematic representations of asymmetric
meters. Our work, on the other hand, proposes an
identification task for musicians, classifying perceived
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rhythms according to formal symbolic music notation,
and investigates how this task is affected by meter
structure, tempo and cultural background.

The next section brings a broad overview on the
types of meter structure frequently found in tradi-
tional Greek music. Section 3 presents the experi-
mental methodology and Section 4 brings experimen-
tal results and their discussion. Conclusions and open
questions for future work are presented in Section 5.

2. ASYMMETRIC RHYTHMIC METERS
IN TRADITIONAL GREEK MUSIC

Greek traditional music is a very important part of
Greek education. Lullabies and cradle songs, chants
of toddlers, nursery rhymes, carols for seasons greet-
ings and even the sneering and satyric songs of car-
nival reflect popular customs throughout Greece, and
offer important material for all stages of education.
Having said that, it is not evident whether non-Greek
listeners unfamiliar with Greek music would have a
harder time (compared to Greek musicians) figuring
out asymmetric meter structures found in ordinary
Greek dances, such as Kalamatianos (a 7/8 measure
of the form : u� C C : or 3+2+2) or Karsilamas (a
9/8 measure of the form : C C C u� : or 2+2+2+3).
It is also not evident whether any listener, Greek or
non-Greek, would judge the longest beat of the former
to be in the first position of the pattern (as 3+2+2)
whereas in the last position for the latter (2+2+2+3).
Any asymmetric meter structure gives rise to rotated
alternatives (e.g. 2+2+3 or 3+2+2+2) that might be
perceived as more fitting for a particular music piece,
according not only to beat durations, but other as-
pects such as musical dynamics (energy), positions of
instrumental and vocal entries, articulations, etc.

Another important aspect of meter structures in
this context is the fact that actual musical instances
consist of several instruments playing varying rhyth-
mic patterns, and not unusually alternating between
patterns that fit several meter structures. As a sim-
ple example, a binary 4+4 (rhythmically equivalent
to 2+2) would easily accommodate instrumental lines
playing 4+2+2 and 3+3+2 and any of their rotations,
in fact any other pattern that adds up to 8 eighth
notes. The same applies to 6+4 (rhythmically equiv-
alent to 3+2), which accommodates 2+4+2+2 and
3+3+2+2, among others. Saying that a piece adhere
to the style of a certain dance or corresponds to a
certain meter structure does not entail that all instru-
ments will play homorhythmically, and thus listeners
will judge the perceived meter structure according to
subjective (and possibly unconscious) criteria.

3. EXPERIMENTAL METHODOLOGY

In a nutshell, the experimental session here proposed
consists of a simple questionnaire with audio excerpts
of Demotika songs, followed by a number of alterna-

tives in music notation for representing them. Each
experimental subject listens to each excerpt and chooses
the rhythmic pattern that best matches the perceived
meter structure.

3.1 Selection / Formatting of Audio Excerpts

Songs were included that reflect the diversity of rhyth-
mic patterns found in traditional Greek music (and
particularly Demotika songs). An attempt has been
made to balance the selection across meter structures,
with a varied palette within each rhythmic style (e.g.
excerpts displaying different tempi, instrumentation,
rhythmic ornaments, etc). In order to keep the dif-
ficulty of the task within a reasonable level, only ex-
cerpts with rhythmic patterns of up to four beats per
measure were be included. Many other interesting and
much more complicated rhythmic patterns surely exist
in traditional Greek music, but exploring this reper-
toire is the subject of future work. We aimed at keep-
ing the session at about 15 minutes, which allowed the
inclusion of 30 excerpts of 30-seconds each. The se-
lected songs are presented in Table 1 along with their
corresponding rhythmic patterns 1 .

3.2 Selection of Rhythmic Patterns

In order to give the subject a wide range of options for
the rhythmic representation of the meter structure of
each song, a dictionary of meter structures was built
by taking all the ground-truth formulae in Table 1, in-
cluding all possible rotations of each asymmetric pat-
tern, and also all patterns obtained from the above by
replacing each long beat (a dotted quarter note) with
a half note (e.g. 2+2+3 would give rise to a 2+2+4
alternative). This produced a set of 27 possible re-
sponses for each excerpt, classified according to the
number of beats (one to four beats per measure).

3.3 Selection of Subjects / Volunteers

Due to the technical nature both of the listening task
as well as the notation used to represent meter struc-
ture, participation in this experiment was restricted to
trained musicians. This is not supposed to mean that
such an experiment is impossible to conduct with non-
musicians but it is understood that the training effort
that would be necessary to allow non-musicians to ex-
press their rhythmic perceptions using a formal and
quantitatively accurate music notation would jeopar-
dize the feasibility of the experiment.

In order to reduce the heterogeneity of the pop-
ulation, the experiment was addressed at university-
level (undergraduate and graduate) music students.
On the one hand this is an audience that is used to

1 For each of the songs, a 30-second excerpt was produced by
cutting an arbitrary portion of the audio signal (between 1:00
and 1:30 from the beginning) and using 100ms fade-in and fade-
out ramps, in order to ensure that each excerpt would start in
an apparently random position (relative to the beginning of a
measure).
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Table 1: Dataset used in the experiment. The first column corresponds to the annotated ground-truth, and the
second column displays the track information for each excerpt included. Excerpt #22 alternates between 2+2
and 3+3+2, having both as ground-truths.

Pattern Style Song/Artist

2+2, : C C : Syrtos/Sta Tria
#1=Perdika (Anastasios Xalkias), #2=Ta Matia ta Glika
(Georgia Mittaki), #3=Kotsarin (Tsimaxidis), #22=Vlaxa Paei
Gia Th Stani (Georgia Mittaki)*

2+3, : C u� : Baiduska #4=Vasilarxontissa, #5=At Xavasi, #6=Mia Kali Geitonopoula
(Elina Papanikolaou)

3+2, : u� C : Zagorisios/Tik #7=Sou’pa Mana Pantrepse Me

3+3, : u� u� : Zonaradikos #8=Aleksis Andriomenos (Elina Papanikolaou),
#9=Vasil’kouda (Xronis Aidonidis)

2+2+2, : C C C : Tsamiko #10=Enas Aetos Kathotane (Giorgos Papasideris), #11=Pame
sti Roumeli (Maikantis), #12=Davelis (Georgia Mittaki)

2+2+3, : C C u� : Mantilatos #13=Hicaz Mantilatos, #14=Siko Koukounouda M’,
#15=Serenitsa

3+2+2, : u� C C : Kalamatianos

#16=To Papaki (Giorgos Papasideris), #17=M’Ekapses
Geitonissa (Elena Maggel), #18=Pou Eisai Lenio Den Fainesai
(Maikantis), #19=Tromaxton Laziko Xorontikon
(Kemetze/Gkogkotsis)

2+3+3, : C u� u� : Berati #20=Berati

3+3+2, : u� u� C : Nisiotikos
Syrtos / Ballos

#21=Ta Ksila, #22=Vlaxa Paei Gia Th Stani (Georgia
Mittaki)*, #23=Na’xa Ena Milo Na’rixna (Miltos Stanos),
#24=To Paneigiri (Giorgos Papasideris)

2+2+2+3, : C C C u� : Karsilamas /
Zeibekikos

#25=Vasilepsen Avgerinos (Xronis Aidonidis),
#26=Katsivelikos, #27=To Enteka, #28=Sfarlis

2+3+2+2, : C u� C C : Argilamas #29=Manio (Xaris Aleksiou), #30=Dimitroula Mou

take rhythmic perception tests, so that this experi-
ment would not seem so out-of-the-ordinary (apart
from the repertoire which might be unfamiliar); on
the other hand, this would reduce the number of se-
nior musicians and/or novices, which would have to
be analysed as separate groups.

3.4 Interface and Experimental Session

The interface for the experiment (available in English,
Greek and Portuguese) was implemented in PHP us-
ing SQL for accessing the database, and was made
available on the Internet using a dedicated server. The
entry page contained an explanatory text about the
nature of the experiment and a consent term, along
with a small form for personal data (name, email,
institution and nationality, only to be used anony-
mously). The experimental session proceeded through
30 pages, one for each excerpt, as illustrated in Fig-
ure 1.

For each user the presented excerpts would follow
a randomized order defined when the experiment be-
gins. This is done to minimize the fatigue effect as
well as other order-related effects. In a drop-down
menu there was also an option labeled “I cannot de-
cide”, to let the user skip an excerpt and continue the
experiment.

Figure 1: Interface of the experiment.

4. RESULTS AND DISCUSSION

The experiment was available between January 9th
and February 9th, 2018, and had 56 participants (36
Greeks and 20 from other nationalities). The raw re-
sults of the experiment consist of a database that re-
lates participants, nationalities, excerpts and meter
structures. One of the first issues that must be ad-
dressed when dealing with these results is to define
what is considered a correct answer. As discussed in
the concluding paragraph of Section 2, many possi-
ble variations of a given notated pattern are musi-
cally meaningful and may be considered differences
of interpretation rather than errors. Therefore, for a
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given ground truth, all answers that add up to the
same amount of eighth notes 2 are considered equally
valid/correct. These include all rotations of a given
pattern (e.g. 3+2+2, 2+3+2 and 2+2+3), but also
different patterns that could be easily superimposed,
such as 2+2+2, 4+2 and 3+3. In the sequel, a series
of analyses of different aspects of the experiment are
considered.

When we consider the number of valid answers each
participant produced (the participant’s score), sev-
eral relevant statistics may be extracted. The aver-
age of the score distribution is µ = 16.7 valid answers
per participant (out of 30), and the standard devia-
tion is σ = 7.4; this sample, however, does not pass
the D’Agostino and Pearson’s normality test (the null
hypothesis corresponding to the sample coming from
a normal distribution is rejected with p = 0.0002),
which renders such a Gaussian description a very poor
statistical model for this data. Figure 2 displays the
same data separated in two groups according to na-
tionality (Greeks and non-Greeks). These two sub-
populations pass the aforementioned normality test
(p = 0.0938 for Greeks and p = 0.2656 for non-Greeks)
and may be reasonably modeled as Gaussian distri-
butions. Valid answers per participant amount to
18.6 ± 6.4 for Greeks and 13.4 ± 7.8 for non-Greeks;
moreover, these averages may be considered signifi-
cantly different (p = 0.0104 for a T-test, p = 0.0230
for a Kolmogorov-Smirnov or KS test). This differ-
ence may be explained due to enculturation of Greek
participants, i.e. their lifelong immersion in a culture
where such music is commonly heard. Yet it cannot
pass unnoticed that, based on these numbers, the task
does not appear to be easy even for Greek music stu-
dents, as might be otherwise presumed.

Figure 2: Number of valid answers given by each
participant, grouped according to nationality.

The number of valid answers per excerpt may also
be studied according to the groups defined above. Fig-
ure 3 displays these values separated for Greeks and
non-Greeks. The two samples formed by these per-

2 For this characterization to be formally well-defined one
needs to consider a rhythmic sort of “octave equivalence”, al-
lowing 2+2 for instance to be considered equivalent to 4+4, or
2+3 and 3+2 to be equivalent to 4+6 and 6+4, respectively.

centages may be compared through their Pearson’s
correlation coefficient r = 0.5374 (p = 0.0022), indi-
cating that they do behave with a certain degree of
correspondence (when the blue bar rises the green bar
also tends to rise, and vice-versa). Both T and KS
tests indicate that the averages of these two samples
(62% of valid answers for Greeks and 44.5% for non-
Greeks) are significantly different (p = 0.0012 for T
test and p = 0.0046 for KS), reconfirming the observa-
tion that enculturation may render the task somewhat
easier for Greeks, but not so much, as several counter-
examples may be found (excerpts #1, #5, #7, #14,
#20 and #22).

Figure 3: % of valid answers for each group / excerpt.

Considering specific excerpts with exceptionally low
values of valid answers, a few patterns emerge. Ex-
cerpts #8 and #9 are symmetric compound binary
pieces (3+3), both of which received more answers
of type 2+2 than 3+3; these are binary meter struc-
tures that differ on the sub-beat representation level.
It might be the case that some students were assum-
ing the sub-beat level would use tuplets (which theo-
reticaly represent exception rather than rule), or else
these are differing opinions on which were the metric
and the tactus levels (phrases for these fast excerpts
did comprise two measures). Excerpts #13, #14 and
#15 corresponded to the structure 2+2+3, a rotated
form of the popular Kalamatianos 3+2+2 that ap-
peared in excerpts #16-#19, a well-known structure
for Greek participants; invalid answers for these ex-
cerpts included 2+2, 4+2 and 2+2+4, all of which
would imply an identification of the long-to-short-beat
ratio of the form 2:1 rather than 3:2. Excerpt #20 (an-
notated 2+3+3, a rotated form of the popular Ballos
3+3+2) received the largest number of ”I cannot de-
cide” answers (35.7%), possibly due to its very slow
tempo (more on tempo below). Finally, the quater-
nary asymmetric structures 2+2+2+3 and 2+3+2+2
(Excerpts #25–#30) were harder for non-Greek par-
ticipants (but #26 reached only 25% of valid answers
among Greeks).

Figures 4 and 5 present the average response times
(in seconds, per excerpt) and average play counts (how

52



Figure 4: Average play counts for each excerpt.

Figure 5: Average response times (s) for each excerpt.

many times in average each participant pressed ’play’
for each excerpt), grouped according to nationality.
Play counts as a function of the excerpt are highly
correlated among Greeks and non-Greeks (r = 0.6439,
p = 0.0001), and response times follow a similar trend
(r = 0.3600, p = 0.05071). No significant differences
between groups have been observed for these statistics
(p >> 0.1 for T and KS tests in both cases). As should
be expected, play counts and response times are highly
correlated (r = 0.8363, p < 0.0001) and no relevant
conclusions should be drawn from this correlation (it
simply takes more time to hear an excerpt repeatedly).

Another indication of the perceptual difficulty of
assigning a meter structure to each excerpt is the mea-
sure of spread of the answers obtained by each par-
ticular excerpt. The measure of spread adopted, also
known as Gini-Simpson diversity index, is displayed in
Figure 6 for each one of the 30 excerpts. This graph
suggests that for a few excerpts a relatively high level
of agreement (small spread) was obtained, such as ex-
cerpts #3, #16, #17 and #18. We have seen that play
counts and response times are highly correlated, but
less obvious are the correlations between play counts
and spread (r = 0.3915, p = 0.0324), and between
response times and spread (r = 0.5216, p = 0.0031)
These observations might support the interpretation

that play counts, response times and spread of answers
have some underlying relationship with the difficulty
of the task.

Figure 6: Measures of spread for each excerpt.

Participants observed an apparent relationship be-
tween tempo of the excerpts and the difficulty in as-
signing a meter structure: the intuition was that for
slower tempi we would pay more attention to the lower
rhythmic levels (e.g. beats and beat subdivisions) than
to the higher metrical levels (e.g. measures and beats).
Figure 7 displays the number of measures for each ex-
cerpt, and also the estimated tempo (based on the
number of measures and the ground truths for meter
structure). Since beats are asymmetric in many exam-
ples, we have adopted a uniform tempo measurement
in units of eighth notes per minute (an eighth note is
the common beat subdivision in formulae such as 2+3
or 3+2+2).

Negative correlations between number of measures
and play counts (r = −0.4298, p = 0.0177) and be-
tween tempo and play counts (r = −0.4801, p =
0.0073) appear to corroborate the observed point: the
lower the tempo the higher the number of times partic-
ipants heard the excerpt. On the other hand, no rele-
vant correlations have been observed between number
of measures or tempo on one hand and response times
or spread on the other (p > 0.1 for all such correla-
tions).

5. CONCLUSIONS

In this paper we approached an important and sel-
dom studied issue in rhythmic perception, namely that
of recognition of asymmetric rhythms in Greek tradi-
tional music by musically literate subjects based on
an accurate symbolic rhythmic notation. An experi-
mental task consisting of assigning rhythmic patterns
in common music notation to audio excerpts was de-
signed and applied to university-level music students
in Greece and other countries. Statistical analysis of
the responses led to preliminary results that answer
some of the questions that motivated this study, while
leaving other questions requiring further investigation.

53



(a) Number of measures. (b) Estimated tempo.

Figure 7: number of measures per excerpt (a) and estimated tempo in eighth notes per minute (b).

One of the questions that was partially answered
by empirical data is the relationship between encul-
turation and accuracy of rhythmic perception. Greek
participants had a slight advantage in producing valid
answers for the selected excerpts. On the other hand,
relatively average-to-low scores even for Greek partic-
ipants indicate that the proposed task is not as easy
as one might assume. Some excerpts (such as #20)
proved to be exceptionally hard for most participants,
a fact associated to a high number of “I cannot decide”
answers.

We also investigated other metrics that might relate
to the difficulty of the proposed experimental task.
Considering the time each participant required to ar-
rive at a decision as a plausible indication of task dif-
ficulty, a significant correlation was observed between
the spread of answers (representing the degree of dis-
agreement between participants responses) and the
temporal metrics of play counts and response times.
This may be interpreted as evidence that all those
factors are somehow interrelated, and maybe repre-
sent converging aspects of difficulty in the perception
of complex rhythmic structures.

Another question for which a tentative answer was
achieved refers to the relationship between task diffi-
culty and tempo of the excerpts. Lower tempi meant
a smaller number of measures covered by the fixed-
length audio excerpts, which could undermine the abil-
ity of participants to match their perceived rhythms
with the given written alternatives. Negative correla-
tions between spread of answers and both tempi and
number of measures in each excerpt may corroborate
these intuitions.

This study barely scratched the surface of the prob-
lem of characterizing the underlying processes in the
perception of asymmetric rhythms in traditional Greek
music, and there are several questions that remain
open. One such question is the relationship between
symmetry / asymmetry of meter structures and the
difficulty of the task. Another such question refers

to temporal accuracy and the alternative interpreta-
tions of the ratios 3:2 and 2:1 for long:short beats.
In order to address these questions it would be im-
portant to investigate the sources of individual vari-
ations in responses to specific meter structures and
individual examples, by proposing musicological ex-
planations for both valid and invalid rhythmic alter-
natives, and by trying to endorse or refute them based
on further statistical analyses and possibly new exper-
imental methodologies.
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ABSTRACT

This work deals with the automatic transcription and character-
ization of flamenco guitar, with a focus on short melodic inter-
ludes improvised between sung verses. These are called falsetas
in the flamenco argot and are very challenging for manual and au-
tomatic transcription due to their fast and highly ornamented na-
ture. However, they are a key resource for guitar players to prac-
tice. We adapted a state of the art singing transcription algorithm
to process an audio signal containing one or several guitar false-
tas and extract their symbolic representation. The algorithms first
perform a segmentation to locate the guitar fragments and then
a symbolic transcription of these segments into symbolic repre-
sentation. In order to evaluate it, we collected the first (to our
knowledge) annotated falseta datasets. Our results confirm the
difficulty of the task, and a detailed study of two transcriptions re-
vealed that combining the algorithm with specific musical knowl-
edge about the scale used by the song, improves the performance
of the system. Our approach follows the principles of research re-
producibility, and the system is integrated in a computer-assisted
paradigm, where the user complements the automatic annotation
with a priory knowledge to generate a final transcription.

1. INTRODUCTION

Flamenco is a musical genre that includes three basic ele-
ments: cante (singing), toque (guitar), baile (dancing), and
has its own rules and traditions. This sociocultural move-
ment has extended internationally beyond its geographical
origin, becoming an Intangible Cultural Heritage of Hu-
manity by UNESCO 1 in 2010.

Unlike other musical genres, flamenco guitar perfor-
mance is orally transmitted; both songs and terminology
have passed down across generations without a standard
writing system. Flamenco falsetas are defined as short im-
provised melodies played between sung verses.

1.1 Related work

The COFLA 2 project deals with how computational mod-
els can support the analysis and synthesis of flamenco mu-
sic to provide an adaptation of the general Music Informa-
tion Retrieval (MIR) methodologies. Some of these as-
pects are linked to standard MIR tasks such as melodic
similarity (Kroher et al., 2014) or genre classification (Sala-
mon, Rocha & Gómez, Salamon et al.) which have been
evaluated and adapted to flamenco music. Previous re-
search has addressed the automatic transcription of flamenco
singing, which has revealed to be challenging compared to
other singing styles (Gómez & Bonada, 2013) (Kroher &

1 http://www.unesco.org/culture/ich/en/RL/flamenco-00363
2 COFLA: COmputational analysis of FLAmenco music. www.cofla-

project.com.

Gómez, 2016). The present study focuses on the flamenco
guitar.

1.2 The flamenco guitar

When analyzing pieces of traditional flamenco music, we
observe a dialog between instruments that appears through-
out most of the songs. In particular, the most important di-
alogue is found between singing (cante) and guitar (toque),
as they alternate on the roles of soloist and accompanying
instrument. This is a key factor in our research because af-
ter a singing section, the lead is taken by the guitar player
during the falseta. The detection and segmentation of the
falsetas are the first steps of the proposed system, which
are then followed by the transcription into a symbolic rep-
resentation using the MIDI format as depicted in Figure 1.
Regarding the transcription stage, we study relevant sound
characteristics of flamenco guitar and typical playing tech-
niques in order to build an optimal transcription method.

Figure 1: Falseta transcription given the traditional dia-
logue between cante and toque

1.3 Goals and contributions

We aim at providing a computer-aided system as a first step
to the manual transcription, which requires advanced mu-
sic and flamenco knowledge. This project is motivated by
the lack of scores of flamenco guitar pieces and the high
difficulty of creating them. These manual transcriptions
provide complementary information to the note’s represen-
tation such as fingering or dynamics. However, this infor-
mation is very hard to find in an automatic way with exist-
ing techniques.

Our system provides a first step to reduce the cost of a
complete transcription. The main purpose of this work is to
develop an algorithm capable of automatically segmenting
and transcribing flamenco guitar sections, also called false-
tas, which would be a useful tool for learning and studying
guitar. To evaluate the system, we created two manually
annotated datasets: one for the segmentation and one for
the MIDI transcription.
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2. DATASET BUILDING

It is hard to find flamenco guitar datasets due to the ab-
sence of related research, mainly in the transcription field.
Since we want to evaluate two different parts of our sys-
tem, we built two datasets: one for the segmentation stage
and another one for the transcription.

2.1 Segmentation dataset

Falsetas are musical segments delimited in time and in the
segmentation stage we look for their boundaries, i.e. start
and end times. We come upon a big controversy regarding
the required length of a guitar section to be considered as a
falseta, as well as identifying start and end points, because
there is not a clear agreement on this topic. For this reason
we define the minimum length as an input parameter of our
system, which is set to 15 seconds by default.

The segmentation dataset contains twenty songs, includ-
ing 43 falsetas (19.5 minutes of audio) from Camarón de la
Isla and Paco de Lucia (1969-1977). For each of them we
manually annotated the start and end times as ground truth
for the segmentation step. All of them are recognized as an
exemplary repertoire for classical flamenco dialog between
cante and toque.

2.2 Transcription dataset

The dataset created for automatic transcription, called To-
queFlamenco contains the manual annotations of ten false-
tas including onset, offset and pitch for each note. To cre-
ate this data, we obtained 3 and edited the score of each
piece and then converted them into MIDI files. Finally,
we manually aligned the MIDI and the original audio to
increase the accuracy. The dataset and details of the anno-
tation procedure are provided in our web page 4 .

3. PROPOSED METHOD

In this section, we detail the steps of the algorithm: given
an audio file, the system automatically finds and transcribes
the guitar sections taking into account some classical fla-
menco features. Our algorithm is based on a state of the
art method for flamenco singing transcription (Kroher &
Gómez, 2016) which is published as a python library Py-
Cante 5 . We adapt it to flamenco guitar in a similar python
library PyToque 6 . The method consists of three main stages:
falsetas segmentation, transcription and post-processing,
each of them explained in the following subsections.

3.1 Falsetas segmentation

The aim of this part is to detect and segment falsetas from
a song that also includes vocal parts (cante). PyToque, as a
user’s choice, allows to skip this step if the input contains
only guitar sections.

3 www.canteytoque.es, www.tabsflamenco.com
4 https://doi.org/10.5281/zenodo.804050
5 https://github.com/NadineKroher/PyCante
6 https://github.com/SoniaLuque/PyToque

3.1.1 Channel selection

In flamenco stereo recordings, the vocals are usually more
predominant in one of the channels: in order to create an
artificial panorama that simulates a live performance, the
guitar is strongly separated from the vocals. To make the
falsetas segmentation easier, one of the channels is au-
tomatically selected to reduce noise and irrelevant infor-
mation. To carry out this task, both channels are ana-
lyzed in terms of the distribution of their spectral energy.
As showed in (Kroher & Gómez, 2016), the energy den-
sity increases between 500 Hz and 6 kHz when vocals are
present. The channel selection strategy proposed in Py-
Toque is based on picking out the one with the lowest av-
erage density in that range. Alongside the guitar section,
the singer commonly says short sentences, also known as
jaleos. Because of this, by choosing the channel where the
vocals are not predominant, the delimitation is more pre-
cise since it avoids having a falseta divided by a jaleo by
mistake.

To analyze the spectral content we compute the Short
Time Fourier Transform (STFT) using a Hanning window
of size N=2048 samples. According to the spectral vocal
features that we mentioned above, we define the suitable
frequency range both for vocals and guitar. Then, the spec-
tral band ratio (SBR) is computed frame-wise dividing the
sum of normalized magnitudes spectrum |Ẋ| of the vocal
frequency band by the one corresponding to the guitar (see
Eq.1), being k the bin corresponding to frequency f . Af-
ter computing the average along the entire signal for each
channel, the system selects the one with lowest vocal pres-
ence i.e. with lowest SBR average (unlike PyCante)

SBR[n] = 20 · log10




∑
k(500Hz)<k<k(6KHz)

∣∣∣Ẋ[k, n]
∣∣∣

∑
k(80Hz)<k<k(400Hz)

∣∣∣Ẋ[k, n]
∣∣∣




(1)

3.1.2 Melody extraction

As we mentioned before, flamenco songs contain a dia-
logue between the voice (cante) and the guitar (toque).
The proposed method exploits this feature to locate the
falsetas. We use the melody extraction algorithm MELO-
DIA (Salamon & Gomez, 2012) to extract the predomi-
nant pitch of the whole piece, which will correspond to the
singing voice part, as the fundamental frequency range is
adapted to singing, as well as rules for selecting pitch con-
tours with fluctuations which are characteristic of singing.
The result is an array, f0[n], that contains a pitch value
per frame. As shown in Figure 2, we assume the segments
detected as unvoiced by MELODIA to be falsetas.

As a parameter of the algorithm, we set the frequency
range between 120 Hz and 720 Hz to track the vocals by
using an analysis window of 4096 samples, as suggested
by the paper authors (Gómez et al., 2012).
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Figure 2: Visualization of the vocal melodic line extracted
using MELODIA. The segment with no melody is likely to
be a falseta.

3.1.3 Contour Classification

In this section, we classify each frame as voiced/unvoiced
if it corresponds to vocal content or not. We will focus on
unvoiced segments as candidates for guitar falsetas. This
process adapts the one proposed in (Kroher & Gómez, 2016)
to get rid of the guitar sections based on spectral features
differences as exemplified in Figure 3. We first extract the
energy in the lower twelve bark bands (see Eq. 2) com-
puted frame-wise to carry out a preliminary discrimination.

B[n,m] =
∑

k(f1,m)<k<k(f2,m)

|X[k, n]|2 (2)

The result for each band m, delimited by f1 (lower fre-
quency limit) and f2 (upper frequency limit) and where
k(f) is the frequency bin corresponding to the frequency
f , is stored in a a 12-length vector ~x for each analyzed
frame n. By using predominant melody information (i.e.
the output of MELODIA), an initial label is assigned to
each vector ~x: the melody frames are marked as voiced
and the non-melody frames as unvoiced. We then com-
pute the mean and the covariance for both groups and fit a
single multivariate Gaussian distribution to both sets sep-
arately. The fitting process is done for each recording and
no training is needed beforehand. We obtain a probability
p for each element to be voiced or unvoiced and we per-
form a binary classification taking into account the highest
probability.

In order to avoid fast fluctuations in this prediction, a bi-
nary moving average filter of length 1 second is applied to
make the vocal detection smoother. Finally, we search for
segments of consecutive melody frames in f0 and evaluate
the result of the prediction for each of them. Those seg-
ments where all the prediction values are equal to zero, i.e.
non-melodic according to MELODIA, are removed from
the f0 list because following our hypothesis, they will cor-
respond to falsetas, and their boundaries are then used for
segmentation. Instead of directly removing the vocal sec-
tions, we observed that if we first eliminate the guitar parts,
as in PyCante, the falsetas delimitation is more accurate.

Figure 3: Bark coefficients representation for vocal and
guitar sections

3.1.4 Falsetas identification and segmentation

In the last step of the segmentation, we locate the null seg-
ments in f0 (see Figure 4) and extract their boundaries.
These segments correspond to the non-vocal parts of the
recording and thus we assume they are guitar sections. Fi-
nally, we compute the duration of each segment: if it is
longer than the minimum duration specified by the user (15
seconds by default), it is classified as a falseta. Otherwise,
we eliminate the segment.

Figure 4: Identification and evaluation of the falsetas can-
didates

The output of the segmentation stage consists of an au-
dio wave file that contains a concatenation of all the de-
tected falsetas. Since we can recover the original audio file,
if it is a stereo recording we obtain one audio file per chan-
nel. In addition, the system also generates a text file with
the boundaries (i.e. start and end points) of each falseta in
seconds. This information is further used for evaluation.

3.2 Transcription

We use the output of the previous stage to obtain a sym-
bolic representation (i.e. a MIDI file) of the falsetas. First,
we analyze the guitar melody with a pitch tracking algo-
rithm and then we find the onsets and offsets of the notes
to define their boundaries. We finally label each note with
its corresponding pitch value. All the steps are detailed in
the following subsections.

3.2.1 Guitar melody extraction

If the input is a stereo audio file, we compute the mean of
both channels because although the guitar is more predom-
inant in one of them, there is still some guitar in the other
one that we also need for a complete analysis. At this point,
we extract the guitar melody using an algorithm proposed
by (Klapuri, 2006) and implemented in the Essentia library
(Bogdanov et al., 2013). This method estimates multiple
pitch values per frame, which correspond to the melodic
lines present in a polyphonic music signal. By default, the
transcription is monophonic but it can also be polyphonic
as a user’s choice:

• For monophonic falsetas, the algorithm only selects
the first frequency value for each frame. We re-
strict the frequency range to 80-750 Hz, which cor-
responds to the guitar range; however, this parameter
that can be modified.

• If we have a polyphonic guitar line, as a limitation
of our algorithm, we take a maximum of two val-
ues within the mentioned frequency guitar range for
each sample. Due to restrictions of the multi-pitch
tracking algorithm, in the polyphonic case we do not
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limit the frequency range; instead, we remove the
values which are out of the range afterwards.

3.2.2 Onset and offset detection

In this step we present the methodology used for note seg-
mentation. We consider typical flamenco guitar techniques
such as contiguous notes that can be tied together, as well
as very fast staccato notes, called picado, played with the
index or middle finger, or alzapúa played with the thumb.

For onset detection we use an algorithm based on di-
verse novelty functions (Dixon, 2006), which is implemented
in Essentia. In our case, even though the guitar strings
have a percussive component, we consider spectral fea-
tures, specifically the spectral flux. This novelty function
is obtained by computing the euclidean distance between
two consecutive and normalized spectra. This method pro-
vides the best results for instruments like guitar, defined as
pitched and percussive by (Dixon, 2006).

To determine the offsets, we computed the average du-
ration of all notes within the transcription dataset which
was found to be davg = 0.16s. If we consider subsegments
as sections between onsets:

• If the subsegment is shorter than davg , the offset is
set as the previous sample of the next onset. In this
case, we consider that the subsegment is too short
and does not need to be analyzed in depth because
the note is muted by immediately playing another
one on the same string.

• Otherwise, we analyze the energy in each subseg-
ment as showed in Figure 5. We compute the RMS
(root mean square) using a window of size N =
256 and define Emax as the maximum energy value
within the subsegment. We also define thr = 0.1 ·
Emax. We define the offset as the first value that
fulfills the condition: Em < thr.

Figure 5: Offset detection process

3.2.3 Pitch estimation and labeling

After delimiting each note in time, we analyze its pitch
content as depicted in Figure 6. We first convert pitch val-
ues from Hz to cents, using fT = 440 Hz as the reference
tone. Then, we compute a local pitch histogram for each
note, H[fcent], and choose the most common pitch value -
as long as it belongs to the guitar frequency range defined
in previous sections. For polyphonic cases, we repeat this
process for the second melodic line. Finally, we convert

the obtained pitch values in cents into MIDI notes using:

MIDInote =

⌈
12 · log2

(
f

fT

)
+MIDIref

⌉
(3)

Given the output of the onset detection function, we label
each note by aligning each onset value (in frames) with the
original signal to obtain the actual points in time (seconds)
using Eq. (4). Afterwards, we use the computed offsets to
find the duration of each note.

oT ime = onset · HopSize

fs
(4)

Together with the MIDI note, the onset and the duration,
we also add an energy value which is closely related to the
volume for each note to provide better perceptual results
when listening to the MIDI file. To this end, we use the
energy function included in the Essentia library. Instead of
the regular MIDI range (0-127), the output is bounded be-
tween 40 and 100 in order to avoid abrupt volume changes
between notes.

With this information we create the resulting MIDI file
using the MIDIUtil Python library 7 , for which we need
to set a tempo value in bpm (beats per minute). We use
the algorithm proposed in (Percival & Tzanetakis, 2014)
to estimate the tempo of the input recording and use it as a
default value. This tempo can be later modified by the user
using any sequencer or MIDI editor. Finally, each note is
defined by an onset time, duration, pitch and energy value,
and all this information is stored in a MIDI file as well as
in a CSV (comma-separated values) file.

Figure 6: Pitch labeling process

3.3 Post-processing

In the last stage of the proposed system we aim to adjust
some potential errors using pitch re-scaling: this method
can only be applied in cases where the user knows the scale
of the piece. It consists of scanning the whole set of notes
and re-scaling the pitch values using tonal features and typ-
ical scales of flamenco music (Fernandez, 2004). Our sys-
tem includes the following scales:

• From modern Western modes, the Phrygian mode
on E and Phrygian dominant scale produced by rais-
ing the third scale degree when ascending as we dis-
played in Figure 6.

• A Flamenco mode which arises from the previous
scale but using a transposition of two tones and a
half as shown in Figure 8

7 https://pypi.python.org/pypi/MIDIUtil/
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Figure 7: Phrygian dominant scale also called Spanish
Gypsy Scale

Figure 8: Phrygian mode transposed to A

• Major scale based on E shown in Figure 9

Figure 9: E Major scale

In flamenco, it is common to adapt the pitch range of
the falseta to the pitch range of the singer by means of
a capo. In order to allow for that we implement a trans-
position function where the user can specify a number of
semitones.

4. EVALUATION METHODOLOGY

We evaluate the segmentation and transcription stages sep-
arately using the two datasets (see Section 2) and two dif-
ferent methods, both included in the mir eval library (Raf-
fel et al., 2014).

Regarding the segmentation stage, we evaluate two dif-
ferent aspects: first, the number of falsetas longer than fif-
teen seconds found by the algorithm, and second, the pre-
cision of their boundaries. In flamenco pieces, we usually
hear short guitar resources used to open and close falsetas
called llamadas, remates or cierres. Since it is not clear
whether to consider them as part of the falseta or not, we
use a tolerance window of size N = 4 seconds to evaluate
the boundaries of each falseta.

For the transcription stage, we evaluate the onset, off-
set, and pitch value for each note in the falseta using the
transcription method in mir eval. According to MIREX
2015 8 , this method assumes an estimated note to be cor-
rect if its pitch value is within ± quarter tone of the cor-
responding reference note. Regarding the onset and offset
rules, we increase the tolerance from ±50 ms to ±100 ms
because of the relative inaccuracy of the manual annota-
tions in the transcription dataset.

4.1 Standard Metrics

To evaluate the performance of our system we use the three
standard information retrieval evaluation metrics: Preci-
sion (P), Recall (R), F-measure (F):

P =
c

c+ f+
, R =

c

c+ f− , F =
2 · P ·R
P +R

, (5)

8 http://www.music-ir.org/mirex/wiki/2015:Main Page

Where c is the number of correct detections, and f+ and
f− represent the number of false positives and false nega-
tives respectively. For the transcription stage, we also ob-
tain the average overlap ratio (AOR) as the mean overlap
ratio computed over all matching reference and estimated
notes.

5. RESULTS

We first examine the number of falsetas identified for each
song without taking into account the segmentation accu-
racy, i.e. we count the number of falsetas that the algo-
rithm finds even though their boundaries are not exact, and
find that our approach is capable of locating as many false-
tas as there are in the ground truth. This accuracy confirms
that this method is able to discern the guitar sections in a
flamenco piece.

The results of the evaluation of the second part of the
segmentation stage (the delimitation of the falsetas) and
transcription stage are summarized in Table 1, averaged
for all the falsetas. Notice that even though we obtained an
accuracy of 100% in the first part of the segmentation stage
(i.e. the number of falsetas), the average precision of their
boundaries falls to 75%. We observe that our system is bet-

Stage P R F AOR
Segmentation (boundaries) 0.75 0.77 0.76 -
Transcription 0.61 0.62 0.615 0.618

Table 1: Results for both stages (independently) according
to the methodology detailed in Section 4.

ter at segmenting falsetas than at transcribing them, which
suggests that there is room for improvement, especially in
this second step.

To understand the limitations of our system, we mea-
sure how pitch re-scaling (PRS), detailed in Section 3.3,
affects the performance of the algorithm. We evaluate two
excerpts of our dataset using the PRS procedure: the first
one (Soleá 1) is a monophonic falseta which has a duration
of 6 seconds and is re-scaled using the Phrygian dominant
scale. The second one (Alegrias) corresponds to a 30 sec-
onds polyphonic piece and is re-scaled using the E major
scale. Table 2 shows these results, and illustrates an in-
crease in precision and recall. This suggests that adding
specific musical knowledge, such as the scale of the song,
to the algorihm has a positive impact on the performance.

Data P R F AOR
Soleá 1 0.79 0.81 0.80 0.71
Soleá 1 (PRS) 0.823 0.848 0.83 0.718
Alegrias 0.735 0.59 0.654 0.412
Alegrias (PRS) 0.756 0.61 0.674 0.415

Table 2: Impact of the PRS applied on two specific cases

Since we are not able to compare the transcription re-
sults with any existing system, we manually inspect the
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MIDI files together with their corresponding audio input.
We observe that the onset detection is quite unstable and
provides significantly different results throughout the dataset
because of the wide range of different techniques used in
flamenco guitar. To measure the performance of onset de-
tection both perceptually and using standard metrics, we
evaluate the system using two methods based on different
novelty functions as shown in Table 3: the complex do-
main spectral difference function (Complex) and the high
frequency content (HFC) detection. We compare these re-
sults with the spectral flux function used by default. Since
the guitar is a pitched percussive instrument, we also in-
clude the evaluation removing the offset rule.

Method P R F AOR
Spectral Flux 0.61 0.62 0.615 0.618
Complex 0.608 0.607 0.60 0.61
HFC 0.618 0.496 0.54 0.59
Spectral Flux (no offset) 0.65 0.661 0.65 0.629
Complex (no offset) 0.658 0.656 0.652 0.614
HFC (no offset) 0.68 0.553 0.607 0.563

Table 3: Results for both stages according to the method-
ology detailed in Section 4

By manual inspection of the results, we observe that the
HFC method is useful for regions with transients, but can
be misleading when hand-clapping appears. The complex
method works properly for pitch-changing notes (legato or
glissando) but not for fast notes. As mentioned in Section
3.2.2, the spectral flux method performs well for pitched
and percussive notes, although it still provides unstable re-
sults for techniques such as glissando, flamenco tremolo 9

or alzapúa.

6. CONCLUSIONS AND FUTURE WORK

We have addressed the problem of falseta detection and
transcription and we consider that the obtained results are
satisfactory. The dataset collection has been one of the
most challenging tasks in our project, given the lack of
scores and related research. Due to this fact, our dataset
still contains few samples and needs to be expanded to ob-
tain more representative results. In spite of that, we think
that this work provides a good starting point for further re-
search in this problem.

We consider that the segmentation provides reliable re-
sults but the system would sometimes need to disambiguate
what is considered as a falseta or not. Our segmentation
method is limited to pieces that contain dialogs between
cante and toque. If a new instrument is present and has
its own sections, the system will probably classify it as a
guitar falseta. As a future work, we suggest to use spectral
features to create timbre spaces allowing the discrimina-
tion between a varied set of instruments. Regarding on-
set detection, a multimodal fusion technique could be used

9 https://www.atrafana.com/flamenco-guitar-techniques–tremolo.html

to stabilize the results by improving the precision also for
those techniques in which weak transients can be included.
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Cabañas, P. (2012). Predominant fundamental frequency
estimation vs singing voice separation for the automatic
transcription of accompanied flamenco singing. In 13th
International Society for Music Information Retrieval Con-
ference (ISMIR 2012), Porto.

Klapuri, A. (2006). Multiple Fundamental Frequency Estima-
tion by Summing Harmonic Amplitudes. Proceedings of
the International Symposium/Conference on Music Infor-
mation Retrieval (ISMIR), 216–221.
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Salamon, J., Rocha, B., & Gómez, E. Musical Genre Classifi-
cation using Melody Features Extracted from Polyphonic
Music Signals.

60



  
 

QUANTITATIVE EVALUATION OF MUSIC COPYRIGHT 
INFRINGEMENT 

Patrick E. Savage Charles Cronin  Daniel Müllensiefen Quentin D. Atkinson 
Keio University Sho-
nan Fujisawa Campus 

psav-
age@sfc.keio.ac.

jp 

USC Gould School 
of Law 
ccro-

nin@law.usc.edu 

Goldsmiths, University 
of London 
d.mullen-

siefen@gold.ac.uk 

University of Auck-
land 

q.atkinson@auck-
land.ac.nz 

ABSTRACT 
 
Unfounded music copyright lawsuits inhibit musical creativity 
and waste millions of taxpayer dollars annually. Our aim was to 
develop and test simple quantitative methods in order to supple-
ment traditional qualitative musicological analyses and improve 
the efficiency and transparency of music copyright lawsuits. We 
adapted automatic sequence alignment algorithms from compu-
tational biology to create a "percent melodic identity" (PMI) 
method that was initially developed to measure the cultural evo-
lution of folk music from different cultures. This method auto-
matically quantifies and visualizes the percentage of identical 
pitch classes shared between two melodic sequences. We applied 
the PMI method to a corpus of 20 pairs of melodies that had been 
the subject of legal decisions and that had previously been ana-
lyzed using automatic methods. We found that the PMI method 
was able to accurately predict 80% (16/20) of previous decisions, 
with PMIs below 50% usually resulting in decisions of no in-
fringement (11/13 cases), and PMIs above 50% usually resulting 
in decisions of infringement (5/7 cases). Importantly, each of the 
four outlying cases could be explained by contextual factors not 
related to melodic similarity (e.g., lyrics, access). Our results pro-
vide promise for improving music copyright evaluation by sup-
plementing traditional qualitative components with quantitative 
methods and visualization tools that are simple enough to be use-
ful to juries, judges, and other non-musicologists.  

1. INTRODUCTION 

Copyright  serves the public good by encouraging the cre-
ation of innovative expression by granting authors a lim-
ited term during which they alone have the right to capital-
ize on their works. In music, unauthorized copying of mel-
odies, lyrics, or other attributes of music has been legally 
prohibited since the 18th century. Initially, copyright law 
was designed to protect simply against wholesale copying 
of entire musical works (e.g., J. C. Bach’s sonatas, the first 
case in which music was recognized as protected by copy-
right). Gradually, however, copyright case law broadened 
the scope of impermissible copying, such that even sub-
conscious copying of parts of a melody could constitute 
infringement if such copying was substantially similar to 
protectable expression in the earlier work. Exactly how 
much and what types of musical copying qualify as “sub-
stantial” is a multimillion dollar question that is being ac-
tively and intensely debated (Cason & Müllensiefen, 2012; 
Cronin, 2015; Fishman, Forthcoming; Fruehwald, 1992). 
These debates have important practical consequences for 
all, as inappropriate music copyright lawsuits not only in-
hibit musical creativity, but also waste millions of taxpayer 
dollars annually that cover the adjudication of these dis-
putes, not to mention the financial and temporal losses of 

individual defendants. One reason for this waste is that ju-
dicial evaluation of claims of musical similarity, on which 
these disputes are grounded, typically involves expert tes-
timony by musicologists, who tend to use subjective, idio-
syncratic, and time-consuming methods, tailored to the in-
terests of the party that has retained them. 

Unlike other arts (e.g., visual arts) where no single di-
mension has been given priority in copyright claims, music 
is unique in that one dimension – melody – has tradition-
ally been the focus of copyright debates. For example, the 
court in King vs. Northern Music (1952) declared: “It is in 
the melody of the composition—or the arrangement of 
notes or tones that originality must be found. It is the ar-
rangement or succession of musical notes, which are the 
finger prints of the composition, and establish its identity.”  

The rise of fields such as music information retrieval 
and music cognition have resulted in the development of 
automated melodic similarity algorithms and their applica-
tion to musical copyright cases (Cason & Müllensiefen, 
2012; Cronin, 1998; Mongeau & Sankoff, 1990; 
Müllensiefen & Frieler, 2004; Müllensiefen & Pendzich, 
2009; Robine, Hanna, Ferraro, & Allali, 2007; Selfridge-
Field, Forthcoming). For instance, Müllensiefen and Pen-
dzich (2009) developed an algorithm that compares the 
profile of successive pitch intervals in two disputed songs 
against each other, while weighting them against a data-
base of comparable profiles from 14,063 pop songs using 
a weighting formula for estimating perceptual salience. 
They found that optimizing this algorithm to a cut-off sim-
ilarity value of 0.24 allowed them to accurately predict 
90% (18/20 cases) of court decisions centered on questions 
of melodic similarity between 1976-2006.  

While such algorithms have been somewhat success-
ful, they have also been hard to translate into terms that are 
meaningful for non-scientists. Not only is it hard for jury 
members to interpret a salience function value of 0.24, but 
even this value is dependent on the makeup of the 14,000-
pop song sample, and thus redoing these analyses using a 
different reference sample would result in different cutoff 
values. Juries, judges, and other interested parties would 
benefit from an intuitive measure of melodic similarity that 
depends only on the two melodies in question and can be 
easily visualized through simple notation.  

The goal of this article is to propose and test a simple 
quantitative measure of musical similarity against a series 
of influential past decisions. Supplementing subjective 
qualitative interpretations with clear and intuitive quanti-
tative guidelines by which to compare new cases with past 
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cases should increase transparency and efficiency, reduc-
ing the chance of costly mistakes in the legal process and 
stemming the recent explosion of meritless claims that aim 
to force a quick payout from artists unwilling or unable to 
accept the risks of the current system.  

2. THE PERCENT MELODIC IDENTITY (PMI) 
METHOD 

We propose to adapt a “percent melodic identity” (PMI) 
method to musical copyright cases. This method is based 
on the automated sequence alignment and percent identity  
calculations used in molecular genetics to compare DNA 
and protein sequences (May, 2004). It was originally 
adapted to music in order to quantify the cultural evolution 
of English and Japanese folk song melodies in ways that 
could be meaningfully compared both with each other and 
with the evolution of other types of music from around the 
world (Savage & Atkinson, 2015). However, musical cop-
yright represents an ideal application for this method, since 
copying of melodies with modification is simply another 
form of musical evolution. The PMI method is a general 
one that can also be applied to other types of folk and art 
music around the world (e.g., gagaku, Child ballads; Sav-
age, 2017), justifying its inclusion in the Folk Music Anal-
ysis workshop despite its application to popular music.  

The PMI method and other melodic sequence align-
ment algorithms are similar in principle to Judge Learned 
Hand’s “comparative method” (Fishman, Forthcoming) 
for evaluating musical similarity. Like Hand, the PMI 
method begins by transposing two melodies transcribed in 
staff notation to a shared tonic, eliminating rhythmic infor-
mation by giving all notes equal values1, and then aligning 
and counting corresponding notes. However, while Hand’s 
alignments were performed manually, the PMI method can 
take advantage of automated sequence alignment algo-
rithms (Needleman & Wunsch, 1970) to eliminate subjec-
tivity in alignment (although alignments can still be per-
formed manually either from scratch or to correct errors in 
the automated alignment, as is also done in molecular ge-
netics).  

Automatic alignment requires penalties to be specified 
for opening or extending gaps in the alignment (repre-
sented by dashes in Fig. 1). Previously, we found that gap 
opening penalties (GOP) of 12 and a gap extension penalty 
(GEP) of 6 were the most successful in distinguishing 
whether two folk melodies shared ancestry (Savage & At-
kinson, 2015; although further testing may be warranted in 
future to see whether these parameters are optimal for mu-
sic copyright cases). Once the melodies are aligned, the 
number of identical notes (ID) are counted and divided by 
the average length of the two melodies (L1 and L2)2 to cal-
culate percent melodic identity (PMI, previously termed 

                                                        
1 Incorporating rhythmic information along with pitch in-
formation greatly increases computational complexity and 
does not appear to contribute substantial additional infor-
mation (Cason & Müllensiefen, 2012; Cronin, 1998).  
2 This has been recommended as the most consistent de-
nominator (May, 2008), but future investigation could 

PID or “percent identity”) as the percentage of identical 
notes shared between the two melodies, as follows: 

𝑃𝑀𝐼 = 100' ()
*+,*-

-
.                                   (1) 

The PMI method can also be used to determine whether 
a given PMI value is statistically significant beyond what 
might be expected by two stylistically similar melodies 
that share similar scales.  To do this, the PMI value for a 
given pair of sequence is compared against the distribution 
of 100 random PMI values given the same sequence 
lengths and compositions, as calculated by randomly reor-
dering one of the sequences (Savage & Atkinson, 2015). 
Thus, an observed PMI value greater than 95% of ran-
domly reshuffled values corresponds to a significant P-
value of <.05. 

Figure 1 shows an example of the PMI method using 
the famous case of Bright Tunes vs. Harrisongs. In this 
case, Judge Owen concluded that George Harrison had 
subconsciously plagiarized The Chiffons’ He’s So Fine 
because the melody of his song My Sweet Lord was “vir-
tually identical”. The PMI method is able to quantify this 
statement more precisely. For the opening three phrases 
shown in Figure 1, there are nine identical notes, while the 
average length of both melodies is 14, giving a PMI of 
64%. When automatically aligning the full melodies of 
both songs, the PMI value drops slightly to 56% (27 iden-
tical notes, average length = 48 notes).    

explore whether other denominators may be more appro-
priate for music copyright. For instance, dividing by the 
length of the prior (plaintiff’s) work may be more con-
sistent with the principle that the shared content needs to 
constitute a substantial part of the original work. 

              

Figure 1. Comparison of the opening melodies of The 
Chiffons’ He’s So Fine (top) and George Harrison’s 
My Sweet Lord (bottom) using a) standard staff nota-
tion, and b) the PMI sequence alignment method. In 
both cases, red represents aligned notes sharing identi-
cal scale degrees (joined with dashed lines in a). 
Dashes in b represent gaps inserted during the align-
ment process. PMI = 64% for these three phrases (56% 
for the full melodies). See Savage & Atkinson (2015) 
for details of how staff notation is converted into se-
quences of letters (including transposition to share a 
common tonic of C).  
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3. MUSICAL COPYRIGHT INFRINGEMENT 
DATASET 

For a ground-truth dataset to test the PMI method, we 
chose the set of 20 court decisions regarding melodic cop-
yright infringement previously analyzed by Müllensiefen 
and Pendzich (2009). These decisions are a subset of the 
decisions available at the Music Copyright Infringement 
Resource (Cronin, 2018) selected by Müllensiefen and 
Pendzich because they contained clear rulings that were 
specifically focused on questions of melodic similarity 
(i.e., excluding cases focused on plagiarism of lyrics, un-
authorized sampling of sound recordings, technicalities 
about the copyright registration process, etc.). This dataset 
seemed like an ideal starting point to test the PMI method 
against because the melodies had already been pre-se-
lected and because automated similarity algorithms had al-
ready been used against them, providing a benchmark to 
compare the value of the PMI method. The list of cases is 
shown in Table 1, with the cases arranged by order of in-
creasing PMI value.    

4. RESULTS 

4.1 Classification accuracy 

Receiver operating curve (ROC) analysis using the area 
under the curve (AUC) measure confirms the intuitive im-
pression from Table 1 that the optimal cutoff PMI value is 
50% (AUC = 0.69). Using this cutoff, the PMI method was 
able to accurately classify 16 out of the 20 cases to match 
the court’s decisions. For each of the four “failures”, how-
ever, the following brief analyses show important non-me-
lodic contextual factors that suggest that these exceptions 
were not due primarily to a failure of the melodic similarity 
algorithm but rather to the complex nature of musical cop-
yright law (see Cronin, 2018 for further details on these 
and the other cases analyzed):    

4.1.1 Grand Upright vs. Warner 

There was no significant similarity between the melodies 
of Gilbert O’Sullivan’s Alone Again (Naturally) and Biz 
Markie’s Alone Again (PMI = 27%). However, there is ob-
vious similarity in the lyrics, particularly in the title phrase 
“Alone again, naturally” used in both works. More im-
portantly, Biz Markie uses an unauthorized sample of Gil-
bert O’Sullivan’s piano accompaniment, and it appears 
that this was in fact the deciding factor in the case. Thus, 
this case may not have been appropriate for Müllensiefen 
and Pendzich to include (we have included it here for com-
parability).   

4.1.2 Three Boys Music vs. Michael Bolton 

This case is interesting because, although there is no sig-
nificant melodic similarity between The Isley Brothers’ 
Love Is A Wonderful Thing and Michael Bolton’s song of 
the same name when taking the chorus as a whole (PMI = 

36%), the opening phrase of each chorus uses not only the 
identical title lyrics but is also almost identical melodically 
(PMI = 86%; 5 out of 6 identical notes; Fig. 2). Thus, it 
appears that not only may similarities in the title/lyrics 
have influenced the jury’s decision, but there may also be 
legitimate room for debate regarding how much of the mel-
ody should be included for purposes of melodic compari-
son and how long/complex a melody needs to be before it 
qualifies as original copyrightable expression. 

4.1.3 Selle vs. Gibb 

The jury’s verdict that the Bee Gees’ How Deep Is Your 
Love infringed on Ronald Selle’s Let It End was in fact 
consistent with the significant PMI value of 61% (Fig. 3). 
However, in this case the jury’s verdict was overruled by 
the judge on appeal based on the fact that the Selle had not 
offered evidence to demonstrate that the Bee Gees had ac-
cess to his work that would have allowed them to copy it. 
Such evidence is a legal requirement in addition to evi-
dence of substantial similarity.   

4.1.4 Fantasy vs. Fogerty 

There was significant melodic similarity between John 
Fogerty’s Run Through The Jungle and his The Old Man 
Down The Road (PMI = 67%) but a jury judged that the 

               

Figure 2. Comparison of the first phrase of the chorus 
of The Isley Brothers’ Love Is A Wonderful Thing 
(top) and Michael Bolton’s Love Is A Wonderful 
Thing (bottom). PMI = 86% for this phrase (but only 
36% for the full choruses).   

               

Figure 3. Comparison of the opening melodies of 
Ronald Selle’s Let It End (top) and the Bee Gee’s 
How Deep Is Your Love (bottom). PMI = 73% for 
these phrases (61% for the full chorus).   
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two works were not musically substantially similar. The 
curious aspect of this case was that it involved a composer 
being accused by a recording company of plagiarizing his 
own work, the copyright to which he had assigned to the 
recording company. Given the substantial stylistic similar-
ities expected among compositions by the same composer, 
it seems possible that the jury may have interpreted the 
judge’s instructions regarding substantial similarity differ-
ently than they might for a case involving disputes between 
different composers. Furthermore, there was limited origi-
nal expression in both melodies to begin with. Both are 
based predominantly on only two notes, so chance alone 
would already give a PMI of approximately 50%. In the-
ory, this limited palette should be accommodated by the 

significance testing aspect of the PMI method, but – as dis-
cussed further below – this significance testing is compli-
cated by other factors and cannot always be relied on. 

4.2 Comparison with other algorithms  

The best-performing algorithm tested by Müllensiefen and 
Pendzich (Müllensiefen & Pendzich, 2009) accurately pre-
dicted 90% (18/20) of these decisions. Their results were 
similar to our results using the PMI method, with the ex-
ception that Müllensiefen and Pendzich’s algorithm re-
sulted in Three Boys Music vs. Michael Bolton falling 
above their 0.24 optimal cutoff threshold, while Fantasy 
vs. Fogerty fell below this threshold.  

No. Case Complaining work Defending work Decision PMI 
1 Suzane McKinley vs. Collin 

Raye 
“I Think About You” “I Think About You” 0 11% 

2 Ferguson vs. N.B.C. “Jeannie Michele” “Theme ‘A Time To 
Love’” 

0 24% 

3 Grand Upright vs. Warner “Alone Again (Naturally)” “Alone Again” 1 27% 
4 Jean et al. vs. Bug Music “Hand Clapping Song” “My Love Is Your Love” 0 35% 
5 Three Boys Music vs. Mi-

chael Bolton 
“Love Is A Wonderful 
Thing” 

“Love Is A Wonderful 
Thing” 

1 36% 

6 Cottrill vs. Spears “What You See is What 
You Get” 

“What U See is What U 
Get” 

0 38% 

7 Baxter vs. MCA “Joy” “Theme from ‘E.T.’” 0 40%* 
8 Intersong-USA vs. CBS “Es” “Hey” 0 40%** 
9 Ellis vs. Diffie “Lay Me Out By The Juke-

box When I Die” 
“Prop Me Up Beside The 
Jukebox (If I Die)” 

0 40% 

10 Granite Music vs. United 
Artists 

“Tiny Bubbles” “Hiding The Wine” 0 41%** 

11 Repp vs. Lloyd-Webber “Till You” “Phantom Song” 0 45%** 
12 McDonald vs. Multimedia 

Entertainment 
“Proposed Theme Music 
‘Sally Jesse Raphael 
Show’” 

“Theme Music ‘Sally 
Jesse Raphael Show’” 

0 46% 

13 Benson vs. Coca- Cola “Don’t Cha Know” “I’d Like To Buy The 
World A Coke” 

0 49%* 

14 Swirsky vs. Carey “One of Those Love Songs” “Thank God I Found 
You” 

1 50%** 

15 Bright Tunes Music vs. Har-
risongs Music 

“He’s So Fine” “My Sweet Lord” 1 56%** 

16 Herald Square Music vs. 
Living Music 

“Day By Day” “Theme N.B.C.’s ‘To-
day Show’” 

1 56%** 

17 Selle vs. Gibb “Let It End” “How Deep Is Your 
Love” 

0 61%** 

18 Fantasy vs. Fogerty “Run Through The Jungle” “The Old Man Down 
The Road” 

0 67%* 

19 Louis Gaste vs. Morris Kai-
serman 

“Pour Toi” “Feelings” 1 73%** 

20 Levine vs. McDonald’s “Life Is A Rock (But The 
Radio Rolled Me)” 

“McDonald’s Menu 
Song” 

1 80%** 

Table 1. The 20 music copyright infringement cases analyzed, ordered by increasing PMI (Percent Melodic Identity). 
See text for discussion of italicized exceptional cases. “0”=No infringement, “1”=Infringement. *P<.05, **P<.01. 
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Müllensiefen and Pendzich also tested other algo-
rithms, including a “raw edit distance” algorithm that was 
more similar to the PMI method in that it was based purely 
on comparisons between disputed melodies without cali-
bration against a database. The raw edit distance algorithm 
performed similarly to the PMI method, except that it 
failed to classify Swirsky vs. Carey as infringement1. 

However, as discussed above, it is not clear whether 
such differences in predicting court decisions truly imply 
that one melodic similarity algorithm is better. Indeed, the 
reverse may be true: Müllensiefen and Pendzich’s algo-
rithm may have overfit melodic similarity measures to 
match decisions that were affected by non-melodic factors 
such as lyrics or the identity of the composer. Future test-
ing on a broader sample of cases should help determine 
whether there are substantive differences in the perfor-
mance of these algorithms.  

4.3 Statistical significance 

The PMI method produced non-significant P-values in all 
cases where the PMI value was below 40%, and produced 
significant P-values in all cases where the PMI value was 
above 50%. PMI values between 40-50% gave mixed re-
sults, but generally produced significant P-values even 
though no infringement was found (5/7 cases). This sug-
gests that the statistical significance measure is returning 
an inflated false positive rate. This is likely due to the fact 
that the comparison with completely random sequence is 
not a fair comparison, as even melodies that are completely 
unrelated will tend to share more pitch sequences than ex-
pected by chance alone due to universal regularities in me-
lodic structure (e.g., tendencies for small, stepwise inter-
vals and descending/arched melodic contours; Savage, 
Brown, Sakai, & Currie, 2015). We thus recommend cau-
tion in interpreting statistical significance of PMI values. 

5. DISCUSSION AND FUTURE DIRECTIONS 

We applied a simple and intuitive PMI (Percent Melodic 
Identity) method for measuring and visualizing melodic 
similarity to a ground-truth dataset of 20 court decisions 
on musical copyright. The PMI method performed simi-
larly to existing, more complicated methods, accurately 
predicting 80% (16/20) of the decisions. 

The major limitation of the current study is the limited 
sample of 20 cases and the fact that these cases include 
some complicating extra-musical factors. This makes it 
difficult to accurately evaluate automated melodic similar-
ity algorithms against one another or conclusively deter-
mine whether they can usefully supplement future cases. 
In the decade since Müllensiefen and Pendzich compiled 
their sample, there have already been dozens of new deci-
sions added to the Music Copyright Infringement Re-
source (including from countries such as China with 
                                                        
1 In fact, Swirsky vs. Carey is the other case that may not 
have been appropriate to include in the database, as it was 

different copyright regimes) and the number of active 
cases is increasing more rapidly than ever. In the future we 
plan to continue to expand and test the database to include 
these and many other cases from around the world. This 
broader sample will also allow us to address various tech-
nical issues such as the relative strengths of the similarity 
algorithms used, the effects of including rhythmic param-
eters, weighting different degrees of melodic similarity be-
yond simply identical or non-identical, etc. (Mongeau & 
Sankoff, 1990; Savage & Atkinson, 2015; Urbano, 
Lloréns, Morato, & Sánchez-Cuadrado, 2011; van 
Kranenburg, Volk, & Wiering, 2013). In particular, the 
cases discussed above highlighted the way similarity 
measurements can vary depending on the lengh of disputed 
melodic sections, and future studies may benefit by 
comparing different melodic lengths using both global and 
local alignment algorithms (van Kranenburg et al., 2013).   

A broader issue is that the traditional reliance on mel-
ody as the key dimension by which to evaluate musical in-
fringement may be changing along with the technology for 
making music (Cronin, 2015; Fishman, Fothcoming). This 
issue has been particularly actively debated recently fol-
lowing the jury verdict in Pharrell Williams vs. Bridgeport 
Music (currently under appeal) finding Williams and 
Robin Thicke liable for damages of over $5 million for in-
fringing on Marvin Gaye’s Got To Give It Up with their 
number-one hit Blurred Lines despite minimal melodic 
similarities. Specifically, the short “signature phrase” cited 
by expert musicologist Judith Finell as the primary me-
lodic similarity, only gives a non-significant PMI value of 
45% (5 identical notes out of 11; Fig. 4), while the PMI 
reduces to 19% when the full melodies are considered.  

Hundreds of musicians, musicologists, and lawyers 
have weighed in on this decision, with some supporting the 
removal of arguably Eurocentric melodic notation from its 
dominant role in copyright law, while others fear the po-
tentially stifling effect on creativity that vaguer and looser 
standards may cause (Cullins, 2018). Some have argued 
that we are already seeing a “Blurred Lines effect” 
(Fishman, Forthcoming) by which more dubious lawsuits 

ultimately settled out of court without a final legal decision 
as to the question of infringement. 

              

Figure 4. Comparison of the “signature phrase” from 
Marvin Gaye’s Got To Give It Up (top) and Robin 
Thicke and Pharrell Williams’ Blurred Lines (bottom). 
PMI = 45% for this phrase (19% for the full melody).   
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are being settled out of court due to fears that the old rules 
no longer apply. Given the changing norms in evaluating 
musical copyright infringement claims, and uncertainty 
about the relative weights given to the various factors go-
ing into past decisions, another important area for future 
work is to isolate the perceptual effects of melodic and ex-
tra-melodic similarities through controlled laboratory ex-
periments (Lund, 2011; Müllensiefen & Frieler, 2004). 

As even this small sample of cases shows, determina-
tions of musical copyright infringement are too complex 
for it ever to be possible to predict outcomes perfectly 
through automated algorithms alone. Trial by algorithm 
will never replace trial by jury, nor should it. However, the 
automated, quantitative PMI method that we have pre-
sented is relatively accurate and easy for non-experts to 
understand and visualize. As such, we anticipate that it will 
help complement traditional qualitative analyses in future 
cases to create a more efficient, transparent, and just sys-
tem for evaluating musical copyright infringement. 
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Tension perception in Greek traditional folk music: examining the 
role of timbral semantics. 

 
ABSTRACT 

 
This paper presents an empirical experiment aiming to investi-
gate the potential influence of timbral semantics on tension in-
duction in Greek traditional folk music. To this end, a group of 
seventeen listeners rated the evolution of auditory luminance, 
texture and mass together with the felt tension over sixteen mu-
sical excerpts in real-time. Correlation and regression analyses 
between these four quality profiles for each particular stimulus 
showed that all three examined timbral qualities had instances 
of very strong association with tension. Although auditory mass 
featured the greatest number of such instances, no safe conclu-
sion can be reached based on current findings regarding the 
most influential timbral semantic dimension for tension induc-
tion. Instead, it seems that a combination of conditions (i.e., 
musical parameters) can either maximise or minimise the influ-
ence of each timbral dimension. 

1. INTRODUCTION 

Music is believed to draw a significant amount of its ap-
peal from its ability to stimulate emotional responses that 
alternate between tension and relaxation (e.g., Huron, 
2006; Lehne & Koelsch, 2015). Krumhansl (2015) sums 
up the cognitive view of musical tension by stating that it 
is created when an expected event is delayed or when the 
context is ambiguous. In general, the tension-relaxation 
phenomena in Western music have mostly been studied 
with a focus on harmony, melody, dynamics and rhythm, 
while timbre –being a domain-general psychological fea-
ture as Farbood (2012) puts it- has been largely un-
derrepresented with the notable exception of Pressnitzer 
et al. (2000). However, Farbood & Price (2017) have re-
cently investigated some timbral attributes with respect to 
tension and reported that higher degrees of roughness, 
inharmonicity and spectral flatness of musical tones were 
associated with higher tension ratings. The authors of this 
work suggest that the effect of timbre on tension should 
be further investigated in more ecologically valid set-
tings. 

In Greek traditional folk music extreme manipulations 
of expectations are not the norm. With the exception of 
improvisational parts, melodic and rhythmic structures 
tend to be repetitive, the orchestrations are generally 
fixed throughout a given song and climactic moments -
that according to Huron (2006) constitute the epitome of 
a tension-relaxation schema in music making- are rare. 
Does this mean that tension build up is not intended by 
the folk music creators and in turn not experienced by the 
listeners? Or could it be that in more predictable musical 

creations, the timbral characteristics of a piece may have 
an important role to play with respect to conveying ten-
sion? If it so, which of the timbral qualities are most in-
fluential? 

This study will aim to address the above questions 
based on the previously developed luminance-texture-
mass (LTM) framework for musical timbre semantics 
(Zacharakis, Pastiadis & Reiss, 2014; 2015; Zacharakis & 
Pastiadis, 2016). The LTM framework suggests that the 
most salient semantic dimensions of musical timbre are 
luminance (i.e., bright vs. dull), texture (i.e., rough vs. 
smooth) and mass (i.e., full vs. empty). Therefore, this 
work will seek to identify for possible associations be-
tween the three dimensions of the LTM framework and 
felt tension in Greek folk music.  

2. METHOD 

A selection of 16 instrumental excerpts from various 
types of Greek traditional folk music (e.g., dances, dirges, 
Akritika, from Epirus, Asia Minor, Aegean islands, etc.) 
also including a variety of lead instruments was presented 
to seventeen listeners. Most excerpts constitute introduc-
tory or improvisational parts and range from 24 seconds 
to 68 seconds long. Vocal parts were avoided partly due 
the increased timbral heterogeneity (Sandell, 1995) that is 
introduced by a human voice and partly due to the seman-
tic charge of the lyrics whose impact could not be con-
trolled. The stimuli can be accessed online at: 
http://ccm.web.auth.gr/timbreandtension.html. Stimuli 
were equalised in loudness through informal listening 
within the research team and their RMS playback level 
was measured to be between 65 and 75 dB SPL (A-
weighted, slow response). The presentation of the stimuli 
was made using a pair of PreSonus HD7 headphones. All 
listeners reported an equal loudness for all stimuli.  

The participants (17) were students at the School of 
Music Studies of the Aristotle University of Thessaloniki 
(6 male, mean age: 21, average years of musical practice: 
12.4) and they received course credit as compensation. 

Participants rated continuously and in real-time the 
change in the timbral qualities luminance, texture and 
mass according to the LTM model, plus the felt musical 
tension1 of each excerpt. The timbral qualities were orally 

                                                             
1 Felt musical tension refers to the amount of tension that is actually felt 
by the participant as opposed to the amount of tension that he/she thinks 
that the stimulus is supposed to express. 
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elaborated very briefly by defining their two extremes to 
ensure that listeners have a common understanding of the 
concept. Positive luminance was defined as auditory 
brightness and negative luminance as auditory dullness, 
positive texture as auditory roughness and negative tex-
ture as auditory smoothness, finally positive mass as au-
ditory fullness and negative mass as auditory emptiness. 
At this point, it has to be noted that the LTM framework 
for timbral semantics has been developed by empirical 
experiments on monophonic timbres. Therefore, the as-
sessment of polyphonic music based on the LTM compo-
nents is a novel element of this study. The concept of ten-
sion was elaborated as inner tension (εσωτερική ένταση) 
in order to avoid confusion that may have arisen due to 
the fact that the word for tension in Greek coincides with 
the term for sound volume. Inner tension was defined 
similarly to Farbood & Price (2017) as: less tension 
corresponds to a feeling of relaxation or resolution, while 
more tension corresponds to the opposite direction.  

The rating device used was a small (16.9 x 21 cm) 
Wacom Intuos draw pen tablet set up like a mouse. 
Movement of the pen on the tablet on the right indicated 
increase of the quality under judgement while movement 
on the left indicated decrease of the quality. The values 
obtained were not limited by the physical dimensions of 
the tablet since the participant could simply reposition the 
pen on the tablet to get more available space just like 
he/she could do with a normal mouse. The data acquisi-
tion interface was custom designed in LabVIEW. It sam-
pled the pen’s horizontal axis coordinate every 5 milli-
seconds and offered participants a real-time visualisation 
of the profiles they were creating.  

Rating on each of the four components was made in 
blocks of random order for each participant. In addition, 
the presentation order of the stimuli within each block 
was also randomised. As a result, all listeners eventually 

listened to each stimulus four times. The duration of the 
experiment was a little over an hour for most of the par-
ticipants not including breaks (which they were advised 
to take whenever necessary in order to keep their concen-
tration levels high).    

3. ANALYSIS & RESULTS 

Raw responses were subsampled by calculating the mean 
value over adjacent non-overlapping rectangular time 
windows (.5 secs = 10 samples). The resulting time series 
were subjected to first-order differentiation and replace-
ment of positive/negative values with 1 and -1, respec-
tively. The time series were next integrated and each par-
ticipant’s data were normalised within each quality by 
his/her maximum rating on this particular quality. Final-
ly, the profiles were smoothed using a cubic spline inter-
polant and linear trends were removed from each individ-
ual participant’s time series to ensure ‘stationarity’ (Dean 
& Bailes, 2010).  

The inter-participant reliability analysis showed a 
good agreement for all qualities under study with lumi-
nance, texture, mass and tension featuring a Cronbach’s 
Alpha of .81 and .86, .88 and .86 respectively. 

Therefore, the processed time series were averaged 
over every stimulus and each of the four qualities under 
study. Figure 1 presents the mean profiles along with 
their 95% confidence intervals. Correlation analysis be-
tween the averaged time series revealed the relationships 
between timbral semantics and tension. The Pearson’s 
correlation coefficient between tension and the timbral 
qualities luminance, texture and mass are presented in 
table 1. Overall, tension variation seems to be associated 
with variation in all three timbral semantic components to 
different extends depending on the particular stimulus. 

Stimulus Lead 
instrument Luminance Texture Mass Tension MIRToolbox 

In a foreign land since a little boy Qanun .50** .71** .85** .30* 
The Rasti Bagpipes .94** .89** .89** .41** 
Zonaradikos Dance Bagpipes - .50** -.34* .30* 
The King throws a party Violin .80** .91** .92** - 
Dirge and Stroto Pogonisio Clarinet .23* .75** .40** .35** 
Lament Lute .69** .95** .87** - 
Karsilamas Politiki Lyra .79** .24* .69** .41** 
Tik dance Pontiaki Lyra .89** .76** .96** .27* 
Dirge from Epirus Ney .87** .25* .92** .63** 
Servikos dance Ney .71** .96** .31* .52** 
Yannis and the dragon Violin - .78** .80** .77** 
If you are going to foreign lands Ney .90** .97** .74** - 
Trygona Santouri .65** -.48** .72** .39** 
Sousta dance of Patmos Bagpipes .68** .56** .48** .32* 
The little Vlach boy Clarinet .95** .90** .97** -.31* 
Sebastian dance Tabouras .92** .34* .27* -.60** 

Table 1. Pearson’s correlation coefficients between tension profiles and the profiles of the timbral qualities luminance, 
texture, mass together with tension calculated by the MIR Toolbox’s miremotion. (**: p<.001, *:p<.05) 
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In addition, a computational tension prediction calcu-
lated from the audio signal according to the miremotion 
function (Eerola et al., 2009) included in the MIR 
Toolbox (Lartillot & Toiviainen, 2007) was also com-
pared to the empirically acquired tension profiles. The 
MIR tension estimation is based, among others, on calcu-
lation of dynamic, tonal and rhythmic variations. The 
window used for calculating tension through miremotion 
was 4 seconds long with 50% overlap. Subsequently the 
time series of the tension calculation were linearly ex-

trapolated to exactly match the number of samples corre-
sponding to the empirical tension profile for each stimu-
lus. Finally, the time series of the miremotion tension 
were also smoothed using a cubic spline interpolant. Fig-
ure 2 shows the sixteen tension profiles that resulted from 
the above procedure and the last column of table 1 pre-
sents the Pearson’s correlation coefficients between the 
empirical and the calculated tension profiles for each 
stimulus. With the exception of ‘Yannis and the Dragon’ 
where the relatonships between the MIR-tension and the 
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Figure 2. Temporal tension profiles calculated from the miremotion function of the MIR Toolbox. 

 

Stimulus 
Standardised beta 

R-squared 
Luminance Texture Mass Tension MIRToolbox 

In a foreign land since a little boy   .85  .72 
The Rasti .90   .15 .91 
Zonaradikos Dance  .51  .34 .36 
The King throws a party   .92  .84 
Dirge and Stroto Pogonisio  .71  .21 .62 
Lament   .87  .76 
Karsilamas .75   .29 .72 
Tik dance   .96  .93 
Dirge from Epirus   .80 .29 .92 
Servikos dance  .96   .93 
Yannis and the dragon   .52 .41 .73 
If you are going to foreign lands  .98   .95 
Trygona   .66 .17 .55 
Sousta dance of Patmos .66   .24 .52 
The little Vlach boy   .97  .94 
Sebastian dance .92    .84 

Table 2. Multiple regression models for each stimulus using tension as dependent variable and the three timbral quali-
ties plus tension calculated by the MIR Toolbox as predictors. 
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LTM components with tension is comparable, in all other 
cases the MIR tension is more weakly correlated to ten-
sion compared to the LTM components, albeit in most 
cases the correlations are statistically significant. 

Wanting to examine the influence of the timbral se-
mantics along with other musical structures represented 
by tension-MIR we performed a two-step linear multiple 
regression analysis with one of the LTM components and 
MIR-tension as predictors and tension as the dependent 
variable. In the first step we picked the best predictor out 
of the LTM components and in the second step we exam-
ined whether additional inclusion of the MIR-tension 
contributed towards a better prediction of tension. The 
models were evaluated based on a combined maximisa-
tion of the explained variance (i.e., R-squared) and mini-
misation of the Akaike Information Criterion (AICc; 
Hurvich & Tsai, 1989).  Table 2 succinctly presents the 
models that were favoured through this process.  

Mass features eight appearances as the best predictor 
while luminance and texture appear only four times each, 
thus implying that mass may be more influential than the 
other two semantic components for tension perception. 
Also, in half of the stimuli, pairing MIR-tension with one 
of the LTM predictors contributes to a better model. 
Overall, the amount of tension variance explained (re-
flected by the R-squared values) is in many cases very 
high, as expected by the generally high correlations be-
tween tension and the LTM components. 

4. DISCUSSION 

This study constitutes a preliminary attempt to investigate 
a potential relationship between timbral semantics and 
tension perception using traditional folk Greek music as a 
vehicle. It should be viewed as a stimulation for further 
discussion on this thorny topic rather than a study that 
provides definitive answers having in mind that this ap-
proach is novel not only in the field of folk music but also 
in music perception literature in general. Using real-
world polyphonic music as stimuli is particularly chal-
lenging for various reasons. First of all, in such a scenario 
all musical parameters (e.g., melodic contour, rhythmical 
patterns, dynamics, expressivity, timbre, etc.) vary con-
currently and cannot be easily isolated. Secondly, the 
timbral heterogeneity (Sandell, 1995) inherent in some of 
our polyphonic stimuli makes the rating of timbral se-
mantics of a whole excerpt of music a non-trivial task. 
Considering this fact, the agreement exhibited for the 
timbral ratings in particular is impressive. 

All tension profiles except for ‘Dirge and Stroto 
Pogonisio’ feature one or two tension peaks at some point 
during the stimulus that are statistically significant (i.e., 
the lowest limit of their 95% confidence intervals is high-
er than the highest limit of the 95% interval of the 1st se-
cond of the stimulus). Such tension profiles have been 

typically identified in music perception literature 
(Krumhansl, 2015). The ‘Dirge and Stroto Pogonisio’ 
features a statistically significant minimum at the second 
half of the stimulus length. Even this sole appearance of 
decreasing tension profile shows that our participants 
were not biased towards reporting a bell-type tension pro-
file at all instances. The LTM profiles feature a higher 
variability in shape, including increasing, decreasing, rel-
atively stable and fluctuating profiles. 

At this point, it has to be noted that the design of this 
experiment does not allow making any judgement with 
respect to the absolute value of the qualities under study 
for each stimulus. This is because participants judged on-
ly the variation of the qualities in time but did not have a 
way to inform us of the initial value of each quality. That 
is to say, a quality profile that does not vary much (e.g., 
the luminance profile for the ‘Zonaradikos dance’) does 
not necessarily imply a low overall judgement of this 
quality. The information on the initial absolute values of 
the four qualities for all our stimuli is going to be ob-
tained and exploited in future work.  

Such information will help to better examine the in-
fluence of timbre on perceived tension and to properly 
validate the perspective suggested by Huron (2006) ac-
cording to which tension can be viewed as the dynamic 
subcategory of a generalised feeling of uneasiness that he 
calls dissonance. The other branch of this general disso-
nance is the static sensory dissonance in which timbral 
information belongs to. In this sense, the stress induced 
by static sensory means, such as timbre, should not be 
strictly viewed as tension but rather as a feeling of uneas-
iness. However, participants’ agreement on tension rat-
ings –reported in the present as well as in other studies- 
suggests that the terms tension and uneasiness can proba-
bly be used interchangeably. 

Despite the above described caveats, our results 
demonstrate that timbral semantics are in many cases 
very strongly correlated with tension perception and that 
tension as calculated by the miremotion from the MIR 
Toolbox can -in half of the stimuli- be used in combina-
tion with LTM components to better account for felt ten-
sion variation. That is, of course, not to say that timbre is 
the most important attribute for tension perception. Since 
correlations do not imply causal relationships, it could 
well be the case that an underlying musical parameter 
(such as melodic contour, rhythmical density or dynam-
ics) is a latent variable, affecting both timbre and tension 
perception. This hypothesis will also be investigated in 
future work.  

In general, probably the most important finding of this 
study is that all three components of the LTM timbral 
semantics framework can potentially influence tension 
perception. This, however, does not always happen in a 
consistent manner as demonstrated by table 1. As an ex-
ample, the two stimuli featuring the highest tension peaks 
(‘Karsilamas’ and ‘The little Vlach boy’) also feature the 
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highest (‘The little Vlach boy’) and third highest lumi-
nance peaks (‘Karsilamas’). At the same time, however, 
the lowest ranked stimuli in terms of maximum lumi-
nance (‘Yannis and the Dragon’ and ‘Zonaradikos 
dance’) are ranked third (‘Zonaradikos dance’) and fifth 
(‘Yannis and the Dragon’) in terms of maximum tension. 
The same also stands for texture and mass. These results 
may pose a partial challenge to past findings supporting 
that sonorities of higher roughness and mass are tension-
provoking means in music (Pressnitzer et al., 2000; Hu-
ron, 2006; Farbood & Price, 2017) by suggesting that this 
may only be conditionally true. 

A similar type of inconsistency emerges from a pre-
liminary musicological analysis of our excerpts. For 
‘Karsilamas’ (featuring one of the highest maxima in 
both luminance and tension profiles) the peak in the pro-
files seems to coincide with a rise in melodic pitch. The 
same stands for ‘Servikos dance’, ‘Rasti’, ‘The King 
throws a party’ and ‘Yannis and the dragon’. A notable 
exception, however, is ‘The little Vlach boy’ where while 
pitch decreases, tension rises to reach the maximum peak 
out of all tension profiles. In this case, the violation of the 
norm could be attributed to the existence of strong melod-
ic attractions and existence of chromatisism. The above 
examples, demonstrate that tension perception is a multi-
faceted phenomenon that is not influenced by one attrib-
ute alone. 

Some other types of idiosyncratic elements that affect 
the profiles of our qualities can also be reported. The 
small fluctuations evident in the profiles of ‘Trygona’ 
could probably be due to the impulsive character of San-
touri, while local rises in tension, luminance or mass 
could be attributed to glissandi or melodic embellish-
ments (e.g., in ‘Rasti’, ‘Dirge and Stroto Pogonisio’, 
‘Dirge from Epirus’ and ‘Servikos dance’). A detailed 
musicological analysis in respect with the acquired LTM 
and tension profiles will be another scope of future work. 

Finally, another issue that warrants further investiga-
tion is a fine-tuning of the window size for the MIR-
tension calculation. The selection of a four-second win-
dow was made in this work as a reasonable choice that 
would successfully simulate human reaction time and 
working memory. However, other possible lengths and/or 
temporal adjustments may yield better associations with 
the empirical data. 
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1. INTRODUCTION 

The term tonality is used in numerous ways with different 
significations in ethnomusicological, musicological and 
music cognition literature, and in its most general sense it 
refers to a cognitively and/or culturally significant hierar-
chical system of relationship between pitches in a piece of 
music, in a repertoire or music culture (Bengtsson 1977). 
Tonality in this general sense corresponds to the concept 
of tonal hierarchy, representing relative prominence, sta-
bility and structural significance of musical tones in a mu-
sical context, a concept which has been frequently ad-
dressed in empirical studies within the field of music cog-
nition over the past 40 years (Krumhansl & Cuddy 2010). 
The empirical research in tonal hierarchy, involving both 
psychological studies and computer modelling, show that 
listeners cognition of tonal hierarchy can be related to sta-
tistical distribution of tones in musical contexts, a correla-
tion which is also shown to be cross-culturally valid (e.g. 
Eerola 2004, Krumhansl & Cuddy 2010, Stevens 2004). 
In the present study computer-assisted modelling of tonal 
hierarchy by means of analysis of statistical distribution of 
tones, is applied on traditional Swedish folk music in order 
to examine idiomatic features of tonality in this music cor-
pus. The aim is to explore whether this approach can pro-
vide new insights regarding stylistic unity and diversity 
within this musical repertoire. More specifically, the con-
cept of key-profile is applied, representing the structural 
prominence of chromatic tones within a mode and key. 
This is not trivial for a number of reasons, such as the fre-
quent use of micro-tonal variation of intonation within the 
style, observed by scholars as early as in the beginning of 
the 19th century as a significant trait of Swedish folk music 
(Boström, Lundberg & Ramsten 2010, Ahlbäck 2010). 
Some previous studies of tonal hierarchy are problematic 
with regards to this issue, assuming a chromatic pitch cat-
egory set as a fundament, an underlying, invariant scale 
structure and not taking musical context into consideration 
in the estimation of structural prominence of tones. 
Moreover, studying stylistic features of traditional folk 
music in Sweden we are faced with the problem of a di-
verse source material, encompassing contemporary com-
mercial recordings, contemporary & historical field re-
cordings as well as transcriptions and collections of music 
notations made under a period of over 200 years, under 
very different conditions, for different purposes and of var-
ying quality regarding e.g. detail. 
A purpose of the present study is to develop methodology 
in order to be able to make comparisons between source 
material with different level of musical detail.  

In order to compare different source material and obtain 
comparable musical representations, a model for auto-
matic musical structure analysis developed by the author 
is used  

2. THE PRESENT STUDY 

The source material used in the study is a combination of 
recordings and notated material of Swedish traditional 
folk music digitized into the same digital music represen-
tation (Ahlbäck 2004, ScoreCloud 2013). This system au-
tomatically transcribes sound or MIDI input into standard 
western staff notation, including quantization, metrical 
analysis, pitch categorization, ornamentation analysis and 
segmentation of melodies, which makes it possible to 
compare sounding and symbolic input on different level 
of detail. 

The source material includes vocal and instrumental herd-
ing music (vallåtar), related to the traditional herding cul-
ture in Scandinavia and Fiddle music, mainly from the 
same geographic area, consisting of notations/transcrip-
tions from the 20th century and field recordings. Handwrit-
ten manuscripts, so called “fiddlers books” with instru-
mental popular fiddle tunes from the 18th century and 19th 
century from the same geographic area as the recordings 
and collected notations was used as a reference material. 
The historical handwritten manuscripts shared a number 
of tunes (melodic themes) with the recorded material. A 
total of 2100 melodies were used in the study. 

The method used for obtaining the key profiles was devel-
oped from methods used in previous studies, based on 
mainly relative duration and frequency of appearance of 
chromatic pitch categories, assuming octave-equivalence 
by Krumhansl and others (Krumhansl 1990). In the pre-
sent study, other statistical features, mentioned in ethno-
musicological literature (Nettle 1964), were also included 
in the measure of structural prominence, such as metrical 
prominence and melody structural prominence, as well as 
features motivated by psycho-acoustical research 
(Parncutt 1994). Moreover, melodic context was also in-
cluded in the measure of structural prominence in terms of 
connectivity between pitch categories within a musical 
context. This was motivated by the significance of me-
lodic structure in relation to intonation of scale degrees 
typical for many modal systems, including western major-
minor tonality. 
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From the total dataset an initial categorization was made 
based on the correspondence with major or minor mode 
profile respectively. It was only possible to obtain a bal-
anced subset of the data for the three different data sets 
(herding calls, fiddle music transcriptions and historical 
manuscripts) for match with the minor mode profile 
(Krumhansl 1990). This particular subset consists of 450 
melodies, 150 melodies from each source corpus and con-
stitutes the comparative material for this study. The anal-
ysis was performed automatically by the system. 

In order to make comparison possible micro-tonal altera-
tions of pitch were automatically assigned to closest chro-
matic pitch category. 

3. RESULTS 

The results show that the obtained mode-profiles (key-
profiles transposed to the same “key”) differ between the 
different repertoires in the study, showing interesting fea-
tures for different repertoires. These differences were 
most significant when using the more elaborate feature set 
for measuring structural prominence of tones. 

However, also when using simple statistical measures 
such as relative duration and frequency of appearance of 
tones, differences and connections between repertoires 
show. 

 
Figure 1. Relative prominence of chromatic pitch catego-
ries (percentage) for different repertoires in the study 
within category “minor mode” key profiles, in compari-
son with minor key profile (Krumhansl 1990). The neg. 
correlation between herding call and manuscript and 
herding call - minor reference are significant p > 0.05 
(Pearson linear), as well as the pos. correlation between 
manuscript and minor 

 

  

 

 
Figure 2. Data distribution for each chromatic category 
within the three data sets. Mean standard error for a 0.40, 
for b 0.58 and for c 0.52. N=150 for each set. 

 

As can be seen in figure 1 and 2, the herding music and 
the fiddle repertoire share certain structural features such 
as the relatively higher prominences of the second scale 
degree in relation to the third scale degree in comparison 
with the manuscript and minor mode profiles. It might be 
interpreted as an influence of the herding call music in the 
fiddle music repertoire. The study indicates that sub-
modes can be found within what is traditionally in a Swe-
dish context categorized in terms of major and minor 
mode, but actually challenges this categorization, even 
when compensating for micro-tonal variation of intona-
tion.  

Furthermore, the study indicates that taking melodic con-
textual factors into account in statistical measurement of 
mode profile, can reveal structural stylistically significant 
features of tonal hierarchy. 
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1. EXTENDED ABSTRACT 

 

Could singing and courtship displays of birds be consid-

ered music and dance? If so, could they provide the basis 

for ritualized human behaviour aiming at social cohesion 

and bonding? Birdsong has inspired western composers 

in the past, and was noted down using WSN up until the 

middle of the 20
th

 century, implying inspired by the per-

ception of inherent music-like qualities (Mundy, 2009), 

such as rhythm, melody, repetition and variation. Few in 

the western world today would call birdsong music, how-

ever, as it lacks human creativity and meaning (Titon, 

2015). The fact that the imitation of birdsong and bird 

courtship display acquires meaning as coordinated musi-

co-ritual activity in performance for many tribes inhabit-

ing the mountainous grasslands of central Papua New 

Guinea is unfortunately often ignored. These activities 

often aim at strengthening social organization and group 

cohesion (Patel, 2010), and on occasion is thought to pos-

sess metaphysical properties (Feld, 1982). Furthermore, 

movement to music, and the activity of making music in 

collaboration with others, is considered a key component 

of activities which are central to ritual, courtship, identity, 

and human expression across the majority of human cul-

tures. 

The aim of this paper is to present a sampling of ritual 

“bird-song” performances from the Huli, Melpa, Enga, 

Bena-Bena and Abau tribes of Papua New Guinea, and to 

compare them to the actual birdsongs and courtship dis-

plays (where applicable) from which they yield their in-

spiration. This juxtaposition involves comparison be-

tween birdsong and bird movements with human music 

activity and dance. 

As this ethnomusicological analysis of songs and dances 

imitating local bird fauna runs parallel with sonic infor-

mation recorded in nature, this juxtaposition is carried out 

through sonogram and frequency analysis of song per-

formances using Audacity and through audio data cap-

tured during fieldwork in 2010 in Goroka and Mt. Hagen. 

Audacity is a free open source digital audio editor and 

recording computer software application which was con-

sidered as an appropriate tool for its easiness of use in the 

field by a non-expert in sound editing and processing. 

Additionally, the Raven Interactive Sound Analysis 

Software is also deployed in further analysis of the sound 

data as it specializes in birdsong. 

Synchronizing movements in performance, a common 

element in Papua New Guinean “bird imitation” dances, 

is thought to “merge” an individual’s self with others, via 

neural pathways that code for both action and perception 

(Overy and Molnar-Szakacs, 2009). Though the short 

sample size does not permit broader assumptions through 

observation, it is possible to yield interesting results re-

garding this organized display of social behaviour in ritu-

al song/dance performance in Papua New Guinea. It has 

to be stressed however, that, as this correlational explora-

tory research study focused on participant performance 

activities occurring in natural context, it was only through 

interviews and bibliographic research that the actual 

causes of such behaviours were determined. 

The results of this study forces us to reconsider the nature 

of “bird imitation” dances not as mere mimicry of nature, 

as Allen and Dawe rightly observe (2015), but as a form of a 

collective group activity, pervading through the history of 

music as a social interaction among our species (Nettl, 

2000; 2010).  

 

Keywords: ecomusicology; ethnomusicology; Papua New 

Guinea; bird-of-paradise; performance ritual. 
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1. INTRODUCTION 

In the scholarly discourse on the origins of Gregorian 

chant (GRE) several medieval chant traditions play key 

roles, notably Old Roman (ROM), Milanese (MIL) and 

Beneventan chant (BEN). Although hardly anything is 

known with certainty about Gallican chant, which was in 

existence in Gaul before GRE, this chant also played an 

important role. The chant of the Mozarabic rite has long 

been considered of major importance as well. However, 

due to the lack of pitch-readable sources it was virtually 

absent in the discussion. (Levy, 1998) 

 At the end of the eleventh century the Mozarabic rite 

and its chant were officially replaced by the Roman rite 

with its chant (GRE). Over 5,000 chants, however, are 

preserved in neumatic notation dating from the ninth to 

thirteenth centuries. In this notation, precise intervals 

(apart from incidental primes) cannot be read (Randel, 

1973). The most complete manuscript is the early tenth-

century León antiphoner (LEO) with over 3,000 notated 

chants (for an example see Figure 1).  

 In Toledo, six parishes were allowed to continue the 

tradition. Oral descendants of this tradition, heavily 

mixed with a newly invented tradition, were finally writ-

ten on the staff in the early sixteenth century (MOZ). 

Only a few dozen melodies agreeing with the early neu-

matic notation of the Mozarabic rite were ever found in 

pitch-readable notation. We know, however, that there 

must have been melodic relations between the lost tradi-

tion and traditions preserved in pitch-readable notations.  

Based on the chant texts and the number of notes per syl-

lable Kenneth Levy (1998) has shown in detail that some 

LEO sacrificia must have been musically related to offer-

tories on the same texts in GRE, ROM and MIL.  

 In a previous paper, we have shown that it is possible 

to produce melodies agreeing in all detail with our 

knowledge of the early neumes (Maessen & Van Kranen-

burg, 2017). In order to produce melodies with higher 

historical probability we compiled a data set of all GRE, 

ROM, MIL, BEN and MOZ offertories (Van Kranenburg 

& Maessen, 2017). For the current study, we additionally 

have encoded 25 out of all 102 LEO sacrificia (2 to 5 

parts each); some from beginning, end and middle of the 

manuscript, and several pieces of specific interest, includ-

ing Levy's sacrificia (20,000 notes in total). Based on the 

intervals between consecutive notes in the traditions of 

this data set we have shown that parts of the chants can 

be classified with very high accuracy. In order to extend 

this classification to include LEO we needed a pitch-

independent feature that is shared by all six traditions. 

The number of notes on a syllable of chant text is such a 

feature. We defined 15 categories for the number of notes 

per syllable. All melisma lengths up to 10 we consider 

separate categories, and we added categories for 11-15, 

16-20, 21-25, 26-50, and 50 or more notes. In this study, 

we perform a (zeroth-order) dimension reduction analy-

sis, and we train (first-order) bigram language models. 

2. CLASSIFICATION 

For each tradition, we trained a bigram language model 

on the representation of the chants as sequences of mel-

isma categories. We followed the same procedure as in 

Van Kranenburg & Maessen (2017): we computed for 

each chant part the perplexity for each tradition, and we 

assigned the chant part to the tradition with the lowest 

perplexity. In all cases the query chant was excluded 

from the language model of its own tradition. Although 

classification appeared to be less precise compared to 

 

Figure 1. The first line of the sacrificium Dum complerentur in the León antiphoner (E-L 8; 210r14). 
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pitch-based models, most chant parts in each tradition, 

could be classified correctly. The fourth row in Table 1 

shows that LEO chant parts are classified 65 % as LEO 

and never as MOZ. ROM has highest classification score 

(80 %), BEN lowest (54 %). When we drop LEO as a 

target class, 70 % of LEO chant parts are classified as 

GRE and again none as MOZ (see Table 2).  

3. DIMENSION REDUCTION 

For a better understanding of the relations between the six 

traditions we also performed a dimension reduction using 

the t-SNE algorithm (Van der Maaten & Hinton, 2008). 

We used the occurrence rates of the melisma categories 

as features. Here, the result was somewhat dependent on 

the way we categorized the number of notes per syllable. 

Nevertheless, there are clear trends observable which are 

consistent across different configurations and different 

runs of the algorithm. Figure 2 shows a typical 2D em-

bedding of the chant parts. Here, again, it is observable 

that LEO is most close to GRE, and that ROM and MOZ 

are most alien to each other.  

4. CONCLUSION & FUTURE WORK 

Some of the misclassifications and outliers of LEO found 

in Sections 2 and 3 are striking. LEO 053, Erit hic vobis, 

and 075, Oravi Deum meum, e.g. are two of only three 

extreme outliers (the other is 027, Sicut cedrus). These 

two chants are also two of only three Levy chants that are 

clearly related to their GRE counterparts (the third is 098, 

Sanctificavit Moyses). The GRE counterpart of LEO 075 

also was the most extreme outlier in our interval-based 

analysis. Since this indicates that Oravi is alien to both 

LEO and GRE, Levy may have been right in stating “the 

most plausible origin” for Oravi and Erit as of “Gallican 

or mixed Mozarabic-Gallican usage” (Levy, 1998). Other 

traditions he excluded on other grounds. Apart from 

Oravi and Erit, now also Sicut cedrus and 099, Congre-

gavit David, are qualified as candidates for Gallican 

chant. Another observation by Levy, the possible Galli-

can origin of five cognate GRE-MIL pairs, is confirmed 

for two of them by our analysis based on numbers of 

notes only: Angelus Domini and Oratio mea. 

 Our main conclusion: it is possible to make claims 

about relations of chant melodies in different traditions 

without reference to their texts and pitch content. This 

means that “a systematic exploration of the preserved 

Mozarabic repertory with a view to identifying any Galli-

can residue” (Levy, 1998) has become much easier. For 

the lost melodies of the Mozarabic rite it also means that, 

using our classification results, we are able to relate each 

chant to a specific tradition and take this tradition as the 

basis for the production of a melody.  

 In order to make our claims more precise we will con-

tinue our investigation in the way how to handle the dif-

ferent numbers of notes on chant syllables and in encod-

ing the sacrificia of the León antiphoner.  
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Table 2. Classification without LEO as a target class. 

Table 1. Classification (in %) of parts in six traditions. 

 

Figure 2. Dimension reduction for six traditions. 
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ABSTRACT 

 

In Hindustani (dhrupad) vocal improvisation singers of-

ten engage with melodic ideas by manipulating intangi-

ble, imaginary objects with their hands while singing, 

such as through stretching, pulling and pushing. Such en-

gagements (‘MIIO’ for Manual Interactions with Imagi-

nary Objects) suggest that some patterns of change in the 

acoustic features relate to rudimentary interactions and 

the levels of effort that the respective objects may afford 

due to their physical properties. Through this work we 

seek to gain a deeper understanding of performance prac-

tice in the dhrupad music tradition in the specific cases 

where the singer seems to interact with imaginary objects, 

by examining whether effort and gesture types appear in 

an arbitrary fashion along with the voice or if they are 

related to the sound in a consistent way. The results sug-

gest that a good part of the variance in both physical ef-

fort and gesture type can be explained through a small set 

of audio and motion features. 

1. INTRODUCTION 

In recent years we have seen a shift towards more embod-

ied approaches in the study of music performance. How-

ever, while sound-producing gestures have drawn strong 

attention, studies on sound accompanying gestures (as in 

singing) have been extremely rare, even more so in terms 

of computational approaches (Luck & Toiviainen, 2008) 

and in the case of non-western ‘oral’ music traditions 

(Clayton & Leante, 2013) like the one portrayed here. 

Additionally, although physical effort has been stressed 

as one of the important aspects in music performance, 

systematic approaches in its role still remain limited. 

Here effort is understood as a concept which reflects 

the active or passive attitude of the person in fighting 

against or giving in to the physical conditions that influ-

ence the movement while trying to achieve an intentional 

task (Hackney, 1998). During MIIIOs Hindustani singers 

seem to act as if they encounter an increased resistance 

upon their hands, presumably imitating the effort that 

would have been induced in handling real objects in our 

natural environment. Although MIIOs can be considered 

as founded on rudimentary knowledge of interacting with 

the environment, whether and how these are related to 

their melodic counterpart is a non-trivial question. Ex-

amining whether, how and to what extent effort and ges-

ture types appear associated with the voice in a consistent 

way is where this work aims to offer a contribution. 

2. METHOD 

The work uses a mixed methodological approach, 

combining qualitative (ethnographic) and quantitative 

methods based on original material that was recorded in 

domestic spaces in India. This consists of interviews (8 

vocalists), audio-visual material (4 vocalists) and motion 

(10-camera passive-marker Optitrack system) capture 

data (2 vocalists) of vocal improvisations by different 

dhrupad vocalists of the same music lineage. We argue 

that the sequential approach of combining the rich 

outcomes of qualitative methods with the compact results 

of quantitative methods can offer a more rigorous and 

comprehensive picture of the phenomena under study.  

Real performances rather than designed experiments 

were used for the purposes of ecological validity. Singers 

were asked to improvise without any further instructions 

and were recorded only during the alap improvisation 

(the initial slow non-metered section, sung to a repertoire 

of non-lexical syllables), in order to concentrate on 

melodic factors rather than the metrical structure or 

lyrical content in the later stages of the rāga performance.  

In the qualitative part of the analysis, we first applied 

a thematic analysis to the interview material in order to 

identify action-based metaphors, which informed the an-

notation process of the video material that followed. For 

the video analysis we relied on third-person observations 

that aimed at identifying, labeling and later classifying 

the audio-visual material in terms of recurrent types of 

MIIOs (categorical), as well as perceived effort levels 

(numerical) that appear to be exerted by the performer in 

a range between 0 (lowest) and 10 (highest). Such anno-

tations were cross-validated by two choreographers. 

In the quantitative part of the study, we used the cross-

validated annotations as response values of linear models 

that were fit to measured movement and sound features in 

order to (a) estimate effort levels and (b) classify gestures 

as interactions with either elastic (through elasticity) or 

rigid (through weight/friction) objects. Two vocalists 

were used here, namely Afzal Hussain (rāga Jaunpurī) 

and Lakhan Lal Sahu (rāga Mālkaunś). The features that 

were used for estimating the responses were computed by 

first extracting time-varying movement and audio 

features from the raw data, and then computing 

representative statistical global measures (such as mean, 

SD, min, max). We started by using the features reported 

in (Nymoen et al, 2013), but then a number of alternative 

features were also explored that were meant to raise the 

explained variance of the estimated responses. 
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3. RESULTS 

Two variations of linear models were developed for each 

task (effort estimation and gesture classification): 

(1) a model that best fits each individual performer, thus 

better reflecting the idiosyncratic aspect of each singer; 

(2) a model that can better describe shared, more generic 

cross-performer behaviours. 

3.1 Idiosyncratic schemes 

3.1.1 Effort levels 

Different idiosyncratic schemes of associating the per-

ceived physical effort with acoustic and movement fea-

tures were identified, that are based on the pitch space 

organisation of the rāga and the mechanical strain of 

voice production. 

Hussain: Higher effort levels are required when the hands 

move slower and wider apart and with a larger speed var-

iation. They are accompanied by melodic glides that start 

from lower degrees and ascend to higher degrees of the 

rāga scale within the boundaries of each individual octave, 

thus they are associated with characteristic qualities of 

the specific rāga. The use of 5 non-collinear audio and 

movement features in the linear models that were devel-

oped yielded a good fit (R
2adj

) of about 60%. 

Sahu: Higher bodily effort is required for hand move-

ments that exhibit a larger variation of hand divergence 

(speed in moving the hands further apart), with a strong 

onset acceleration. They are accompanied by larger me-

lodic glides that reach up to higher maximum pitches, re-

flecting the increased mechanical strain of voice produc-

tion. As the alap is organised based on a gradual ascent 

towards the pitch climax, pitch is here also representative 

of the alap macro-structure. The use of 4 non-collinear 

audio and movement features in the linear model yielded 

an adequately good fit (R
2adj

) of about 44%. 

3.1.2 Gesture classification 

Different modes of gesture class association with acoustic 

and movement features were identified, that are based on 

regions of particular interest in the rāga pitch space or-

ganization and analogous cross-domain morphologies. 

Hussain: It is more likely that interactions with elastic 

objects (rather than rigid) are performed by hand gestures 

that exhibit a low absolute mean acceleration and a large 

variation in hands’ divergence. They are associated with 

slower and larger melodic movements that ascend to a 

higher degree of the scale. Interestingly, the highest de-

gree happens to be the most unstable degree of the scale 

(in rāga Jaunpurī), which imposes a subsequent pitch de-

scent (i.e. a double pitch glide), similar to the change of 

direction observed by the hands when interacting with an 

elastic object. Thus, it could be suggested that MIIO 

types are associated with the grammatical rules of the 

rāga. The use of 5 non-collinear audio and movement fea-

tures in the logistic models that were developed yielded a 

high classification rate (AUC) of about 95%. 

Sahu: Interactions with elastic objects are more likely 

performed with pitch movements of a larger interval and 

larger duration and with the hands moving faster and re-

maining bound to each other. The use of 4 non-collinear 

audio and movement features in the logistic models 

yielded a high classification rate (AUC) of about 80%. 

3.2 Generic scheme 

3.2.1 Effort levels 

Higher bodily effort levels are required by both singers for 

melodic movements that start from a lower and reach up to a 

higher pitch, reflecting the mechanical requirements of voice 

production. They are accompanied by movements which are 

slow on average but exhibit a large variation of speed, and in 

the specific case of Hussain when the hands move further 

apart. Two almost identical linear models were developed, 

yielding a good fit (R
2
adj) of about 53% (with 5 features) for 

Hussain and 42% (with 4 features) for Sahu  respectively. 

3.2.2 Gesture classification 

Interactions with elastic objects are more likely to be per-

formed at lower pitches for larger melodic movements, 

and with the hands moving further apart for Hussain and 

less apart but faster in the case of Sahu. Two almost iden-

tical general logistic models were developed, yielding a 

good fit (AUC) of about 86% (with 3 features) for Hus-

sain and 78% (with 4 features) for Sahu respectively. 

4. CONCLUSIONS 

MIIOs offer a special case where motor imagery is 

“materialised” through physical actions directed towards 

an imagined object. Despite the flexible character of 

music-movement correspondences, there is ample 

evidence of more generic associations that are not 

necessarily performer-specific or stylistic. I suggest that 

the vocalists’ capacity of imagining musical sound is 

facilitated through the retrieval of motor programs and 

image schemata from well-known real interactions with 

real objects and that this may be exactly the reason for 

which imaginary objects are employed. 

As much as bringing the advantages of ecological validity 

in combining ethnographic data with exact measurements 

of real performances, the approach that was followed has 

also posed important challenges and limitations, such as 

the limited dataset. Larger datasets of multiple performers, 

performances and rāgas for each performer would be 

beneficial for enabling a more systematic comparison 

between performers, performances and rāgas. 
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1. INTRODUCTION 

Since the 19th century, many composers attempted to 
blend local national musical elements (such as traditional 
rhythms, modal thematic materials) with aspects of estab-
lished western musical idioms (such as classical tonality, 
post-tonal harmony, atonality); this way, novel musical 
styles were created that have a characteristic local flavor. 
This paper focuses on issues of creativity involved in the 
interaction between traditional folk melodies and diverse 
harmonic idioms. Traditional melodies often embody 
characteristics outside the ‘standard’ western major-
minor framework, posing a challenge for a composer that 
wants to reconcile partially incompatible music systems. 
Can a creative computer system assist such a task? This 
study employs a system that harmonises folk melodies in 
diverse harmonic styles and presents some results regard-
ing its usage. This system is a rather rare instance of the 
application of creative technologies in the domain of tra-
ditional music. 

2. THE CHAMELEON HARMONISER 

The CHAMELEON melodic harmonisation assistant has 
been developed in the context of the COINVENT project 
framework1 and is capable of harmonising a given melo-
dy in different harmonic styles (Kaliakatsos-Papakostas 
et al., 2016), and also of blending different harmonic idi-
oms (Kaliakatsos-Papakostas et al., 2017). The proposed 
melodic harmonisation assistant is adaptive (learns from 
data), general (can cope with any tonal or non-tonal har-
monic idiom) and modular (learns different aspects of 
harmonic structure such as chord types, chord transitions, 
cadences and voice-leading). This harmonisation system 
can be used to generate novel harmonisations for diverse 
melodies via the exploration of the harmonic possibilities 
provided by the implied harmonies of input melodies. 

Harmonic blending, as performed by CHAMELEON, in-
volves two different processes. The first process is melo-
dy-harmony blending whereby a melody originating from 
a given musical idiom (with certain implied harmonic 
qualities) is harmonised based on a harmonic space 
(chord types, chord transitions, cadences, basic voice-
leading) derived via machine learning from a different 
harmonic idiom. The second, is harmony-harmony blend-
ing whereby the harmonic space that is used to harmonise 
a given melody is, itself, the product of blending between 
two different harmonic idioms. In this paper we use both 
processes, whereby an annotated melody is presented to 
the system to be harmonised in different single or blend-
ed harmonic styles (from medieval to contemporary har-
                                                             
1 http://coinvent.uni-osnabrueck.de/ 

monic styles). Several examples of creative harmonisa-
tions of different traditional melodies (Scottish, Greek, 
Russian, etc) have been produced (see Kaliakatsos-
Papakostas et al., 2016 & 2017). 

3. CREATIVITY & ACTIVE EVALUATION 

A number of passive listening empirical studies have 
been conducted aiming to evaluate the creativity of 
CHAMELEON (Zacharakis et al., 2018). In the context 
of an active evaluation of the system, a compositional 
‘assignment’ was given to seven composers or composi-
tion students in Thessaloniki (2 graduates of the School 
of Music Studies of the Aristotle University of Thessalo-
niki and 5 students enrolled in Costas Tsougras's "Stylis-
tic Composition" course during the 2016 spring semes-
ter). The composers were provided with three different 
Greek folk melodies to choose from: "Είχα µιαν αγάπη" 
(Eicha mian agapē, "I had a love", in D Aeolian mode), 
"Απόψε τα µεσάνυχτα" (Apopse ta mesanychta, "Tonight 
at midnight", in A Aeolian mode) and "Μωρή κοντούλα 
λεµονιά" (Mōrē kontoula lemonia, "Oh short lemon tree", 
in D minor pentatonic mode). For each melody 40 differ-
ent harmonisations were provided, created by 
CHAMELEON from 16 diverse harmonic idioms and 
their blendings ('BC' - Bach chorales, 'BTL' - Beatles, 'JA' 
- Jazz, 'CN' - Constantinidis, 'HM' - Hindemith, 'KP' - 
Kostka Payne, 'PL' - Palestrina Stabat Mater, 'FB' - 
Fauxboudon, 'BN' - 'Bossa nova', 'CAN' - Chords added 
notes, 'GG' - Grieg, 'MDC' - modal chorales, 'PAC' - Par-
allel chromatic, 'POC' - polychords, 'WT' Whitacre major 
or minor, 'WT' - whole tone). The participants were asked 
to select the melody of their preference and the harmoni-
sation/s that they considered more interesting/inspiring 
and compose a miniature for piano employing any com-
positional elaboration/variation techniques they deemed 
appropriate. The aim of the experiment was the creative 
use of the produced harmonisations as a structural har-
monic framework for the building of rich musical tex-
tures and original compositional thought. 

An excerpt from one of the seven short compositions, 
Lazaros Tsavdaridis's "Mōrē kontoula lemonia" is pre-
sented, in order to demonstrate the process. The song's 
harmonizations were produced from the annotated score 
of Fig. 1 (the annotation defines the mode, the phrasing 
and the harmonic rhythm). The composer chose a single 
CHAMELEON harmonisation, a blend between Jazz mi-
nor and Parallel Chromatic Harmony (see Fig. 2) and 
produced two piano variations, one simple and one more 
complex. In the first variation, presented in Fig. 3, he de-
velops pianistic textures and voice-leading from the pro-
posed harmony, choosing to deviate from it when neces-
sary (e.g. in bars 15-16, to achieve a better cadence). 

82



  

 

 
Figure 1. Annotated first phrase of "Mōrē kontoula lemonia". 

 
Figure 2. Harmonisation by CHAMELEON produced from the 
blending of the idioms 'JA minor' and 'PAC'. 

 

 
Figure 3. Excerpt (1st variation) of composed piano miniature. 

The seven composers created very diverse piano 
miniatures by applying different elaboration techniques 
on the selected harmonic backgrounds, by creating 
various types of textures and layers and by developing 
original forms that optimally accommodated their 
material (see and listen to all the pieces at 
CHAMELEON's website1). The seven miniature pieces 
were performed on 19 October 2016 by pianist Fani Ka-
ragianni during a live concert at the Museum of Contem-
porary Art in Thessaloniki.  

Most composers reported that they found the whole pro-
ject very stimulating and that they considered some of the 
harmonisations particularly inspiring; some stated that 
they would have never come up with one or more of the 
harmonisations they used. Overall, there was a positive 
response regarding at least some of the creative products 
of this system. More extended creative evaluation studies 
are expected to be conducted in future research. 

So, CHAMELEON aids composers at one of the most 
important stages of composition, the choice of pitch 
material and the creation of the harmonic (structural) 
background, by providing an easily-controlled 
computational environment which very rapidly produces 
a multitude of diverse creative options, thus by 
broadening their choices at the minimum of time and 
effort. Of course, what defines the quality and originality 
of the musical result is ultimately each composer's 
personal touch and inventiveness, as the creative kick 
provided by CHAMELEON is only the first stage of 
evolution of the pieces' character, form and design, 
parameters between which the seven compositions 
differentiated substantially. 

4. CONCLUSIONS 

This study proposes a way to use creatively artefacts of 
music heritage, namely, folk melodies. Creative systems 
such as CHAMELEON may enhance users’ appreciation 
for and engagement with traditional music, enabling them 
not only to access such music in digital repositories but 
also to re-use it creatively in novel compositions.  
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1. INTRODUCTION 

The aim of this extended abstract is to outline a technique 
for visually exploring melodic relationships within folk 
tune collections. It stems from related work known as 
TuneGraph, [1], which allows users of abcnotation.com to 
explore melodic similarity. TuneGraph uses a similarity 
measure to derive a proximity graph representing similar-
ities within the abc notation corpus. From this a local graph 
is extracted for each vertex, aimed at indicating close var-
iants of the underlying tune. Finally an interactive user in-
terface displays each local graph on that tune’s webpage, 
allowing the user to explore melodic similarities.  

As it stands TuneGraph only gives a localised view of 
the melodic relationships: this paper aims to look at ex-
ploring those relationships at a global (corpus-based) level. 

2. METHODOLOGY 

The essential idea is that, given a collection of tunes and a 
melodic similarity measure which can measure pairwise 
similarity between tunes (e.g. [2]), it is possible to con-
struct a complete proximity graph of the corpus. Here the 
melodic similarity measure used is multilevel recursive 
sub-sequence alignment discussed in detail in [1] with 
some additional enhancements, tested in [3], also applied. 
However, the ideas are generic.  

In the proximity graph each vertex represents a tune and 
edge weights represent similarities between tunes: the 
greater the similarity the larger the edge weight. If a simi-
larity threshold, T, is applied so that an edge is only in-
cluded if the two tunes it connects are sufficiently similar 
(if they match across at least some proportion T of their 
length, [3]) then a sparse proximity graph can be induced 
(the higher the threshold, the more sparse the graph). Sub-
sequently, when the graphs are displayed, edge thickness 
is shown in proportion to the weight with similar vertices 
joined by thick edges and dissimilar ones by thin edges. 

Following [1], the value for T used here is 1/6, a good 
compromise between restricting the number of edges (in 
order to make the visualisation tractable) but including 
enough to make the graph sufficiently rich. Further testing 
with other of values including 1/4 and 1/8 will be shown.  

However, most reasonable values of the threshold typi-
cally generate a corpus graph with several disconnected 
components (subgraphs that are not connected by any 
edges) and often many isolated vertices (vertices with no 
incident edges – i.e. tunes that are not sufficiently similar 
to any other tune in the corpus to generate an edge). 

                                                           
1 https://themorrisring.org/music 

This presents a problem for the investigation discussed 
here. An option is simply to visualise the largest connected 
component: however, this may only represent a small por-
tion of the dataset. Accordingly, a straightforward scheme 
has been devised for connecting up the graph with a mini-
mal number of zero weighted edges to help with the layout. 

The setting of the edge weight to zero is important for 
the visualisation: since edge weights influence vertex 
placement, a zero weight edge will have minimal impact 
on the graph layout but the edge will mean that the two 
insufficiently similar vertices that it connects are posi-
tioned as close together as possible.  

Once the corpus graphs are constructed they can be vis-
ualised using MultiLevel Force-Directed Placement 
(MLFDP) algorithms, e.g. [4], a standard technique for 
visualising large unstructured graphs. 

3. RESULTS AND DISCUSSSION 

3.1 Annotated datasets 
The initial investigation explores two small datasets 
known to contain many related tunes and which have been 
annotated manually to indicate similar melodies, specifi-
cally those belonging to the same tune family. 

The first of these datasets is the Annotated Corpus of 
the Meertens Tune Collection, version 2.0.1, [5]. This con-
tains 360 Dutch folk melodies, each identified by experts 
as belonging to one of 26 tune families. 

The second dataset contains 368 English morris dance 
tunes taken from the Morris Ring website1. Since morris 
music has several (approx. 35) traditions, each typically 
associated with a village, there are many tunes found in 
more than one tradition, but each tradition typically has a 
different variant of the tune. This dataset therefore contains 
368 tunes which have been manually identified as belong-
ing one of 113 tune families. 

Because the datasets are annotated, the tune families in-
duce a partition on the graph and different families can be 
visualised with different colours. Fig. 1 shows the results 
of the corpus graphs, visualised using MLFDP and over-
laid with the partition induced by the tune families (zero-
weight edges used to connect the graph are not displayed).  

As can be seen, for both datasets the graph construction 
and visualisation is very complementary to the attribution 
of tunes to tune families: most edges go between tunes that 
are in the same family and even where they are not con-
nected, most isolated vertices and small components (e.g. 
pairs) are close to other tunes in the same family. 

Together these suggest that this kind visualisation can 
help to disambiguate tune families. 
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3.2 Collection-based datasets 

The second set of results come from two tune collections 
which are not annotated (so not partition data is available). 
These are the Village Music Project1 with around 5,600 
English tunes transcribed from 18th & 19th century manu-
scripts and a subset of 5,000 of the ~30,000 tunes found at 
The Session2, a community site which hosts a large collec-
tion of Irish traditional music. 

Fig. 2 shows visualisations of the resulting corpus 
graphs. The structures are similar to their smaller counter-
parts in Fig. 1 although with many more disconnected ver-
tices (these are much larger and much more disparate da-
tasets). Nonetheless, tightly bound clusters of similar tunes 
are clearly visible, together with other structures, such as 
super-connectors (isolated vertices surrounded by sun-
flower like structures of other isolated vertices) and weak 
linkage (long, lightly-weighted edges which indicate loose 
connections between different subgraphs). 

Although it is not easy to draw any conclusions from 
these two visualisations, it is encouraging to imagine an 

                                                           
1 http://www.village-music-project.org.uk/ 

interactive exploration tool with user-driven zoom features 
and including score rendering and MIDI playing facilities. 
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Figure 1. Visualisations of the Meertens (left) and Morris Ring (right) corpus graphs. 

 

               

Figure 2. Visualisations of the Village Music Project (left) and TheSession (right) corpus graphs. 
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1. INTRODUCTION

Oral transmission plays a significant role in folk music.
Through this often imperfect communication process, cer-
tain parts of melodies remain stable, variations are created,
repeated patterns emerge [1]. Formulated in ethnomusico-
logical studies, the concept of tune family describes the
structures in this stream of transformations: folk songs
that are supposed to have a common ancestor in the pro-
cess of oral transmission are grouped into a tune family.
Local structures within the melodies, namely characteris-
tic motifs, or prominent, nonliterally repeated patterns, are
detected to be useful in determining music similarity and
classifying tune families [2]. Subsequently, in an annota-
tion study on the influence of different musical dimensions
on human similarity judgements of melodies belonging to
the same tune family, repeated patterns between melodies
turned out to play the most important role for similarity
among all considered musical dimensions [3]. Therefore,
algorithms which can extract these repeated patterns auto-
matically would be useful for tune family classification.

Different pattern discovery methods have been intro-
duced, such as sequence-based approaches [4, 5, 6, 7], ge-
ometric approaches [8]. Unfortunately, patterns extracted
by state-of-the-art algorithms are not yet capable of replac-
ing human annotations when we attempt to apply the pat-
terns to classification and discovery tasks [9, 10].

This paper uses Principal Component Analysis (PCA) to
better understand characteristics of musical patterns and to
further use this information for designing and evaluating
future pattern discovery algorithms. We show what fea-
tures can summerise the data variance in musical patterns
and propose using feature selection and extraction methods
to improve pattern discovery algorithms.

There exists research that uses patterns in analysing tune
families, modelling similarity, improving compression and
retrieval tasks [10]. In this setting, it is common to either
take the features of the whole song or the raw data of pitch
and duration pairs of the patterns. We do not know of ex-
isting studies that focus on investigating the features only
within patterns in music.

2. DATA AND SETUP

Dataset The corpus data we use is the Dutch folk song
dataset MTC-ANN [11]. Three experts have annotated the
prominent patterns in each song which could best position
the song into one of the 26 tune families. The dataset con-
sists of 360 Dutch folk songs with 1657 annotated patterns.

Feature calculation We calculate features from the pat-
terns by using a common feature extraction tool: the jSym-

bolic2 toolbox in the jMIR toolset [12]. jSymbolic2 takes
MIDI files as input and computes 155 musically meaning-
ful features in six categories: texture, rhythm, dynamics,
pitch, melody and chords.

Feature selection We perform a feature selection step
and retain 64 features as follows: (1) Eliminating the fea-
tures which are constant across all patterns; (2) Eliminat-
ing the features which are irrelevant to the music content of
time and pitch, such as the dynamics features and artefacts
introduced by MIDI conversion.

PCA After feature selection, we further combine and
transform features to make new combined features, which
is known as the feature extraction step. PCA is a well-
known feature extraction and dimension reduction method.
PCA gives new combinations of features which form or-
thogonal principal components. The principal components
are in the same directions as the directions of the largest
variances of the dataset. By examining the resulting prin-
cipal components, we gain insights as to which features are
of more significance in explaining the spread of the data
points. PCA has been employed and shown to be effective
in many MIR tasks [13]. We take a similar approach in the
PCA analysis as [13] in which the author investigated audio
features in popular music.

3. RESULTS

In Table 1, we report the prominent features and the weights
in the first three PCA components. We make the follow-
ing observations: (1) The most significant feature of the
first component is the number of strong rhythmic pulses.
Since rhythmic pulses are derived from beat histogram, it
shows the importance of metric structures in the patterns. 1

More specifically, although there are both pitch and rhyth-
mic features in the first principal component, we have three
rhythmic features and two pitch features. In the second
component, although there are more pitch features, the re-
peated notes feature is relevant both to pitch and duration.
In the third component, we only have rhythmic features.

Furthermore, to give a fuller picture than the first five
features in each component, we calculate the total weight
sums of rhythmic and pitch related features. In the first
component, the pitch related features have a total weight
sum of 48.89% and the rhythmic features have a total weight

1 For the details of other features, please refer to [12]. Given that we
have 40 pitch related features, 20 rhythmic features and 4 features related
to both pitch and duration, it is non-trivial that we have rhythmic features
top-ranked in the first three principal components.
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PC (Percentage of variance explained) Features Weight (Percentage)
Number of Strong Rhythmic Pulses 5.18
Pitch Variety 5.15

PC1 (22.51) Number of Relatively Strong Rhythmic Pulses 5.07
Number of Common Pitches 5.07
Number of Moderate Rhythmic Pulses 5.07
Other Features 74.46
Repeated Notes 8.24
Relative Prevalence of Top Pitches 8.06

PC2 (12.42) Relative Prevalence of Top Pitch Classes 7.58
Prevalence of Most Common Pitch 6.32
Prevalence of Most Common Pitch Class 5.98
Other Features 63.82
Combined Strength of Two Strongest Rhythmic Pulses 10.58
Polyrhythms 9.98

PC3 (8) Rhythmic Variability 9.27
Strongest Rhythmic Pulse 7.26
Strength of Strongest Rhythmic Pulse 7.14
Other Features 55.77

Table 1: The first three principal components of PCA and the weights of features. We omit the rest of 64 − 3 = 61
components since they do not contribute significantly (< 7.5%) to the variance and, for visualisation purposes, it is common
practice that only the first three dimensions of PCA are considered.

sum of 46.38%. In the second component, pitch and rhyth-
mic features have 64.45% and 27.89% weight sums respec-
tively. The weight sums are 25.2% and 68.0% for the third
component. In summary, looking at the first three dimen-
sions of PCA, we see a balanced contribution from both the
pitch and rhythmic features.

4. CONCLUSION AND DISCUSSIONS

Using PCA, we show the prominent features of MTC-ANN

patterns. The pitch related and rhythmic features contribute
together to the first PCA component; the second and third
component is consist mainly of pitch related features and
rhythmic features respectively. Despite the fact that we
have less rhythmic features computed using the jSymbolic2
toolbox, the rhythmic features do not contribute less in the
first three principal components. One might argue it is ob-
vious that both pitch and rhythmic features are important,
but it is remarkable that the two together contribute to each
of the first few PCA dimensions.

The prominent features also give hints on potential im-
provements to current existing pattern discovery algorithms.
Although metric structures have been considered in musi-
cal pattern research [14, 15, 16], many pattern discovery
algorithms do not explicitly consider metric structures im-
posed by musical punctuations such as bar lines and mea-
sures. According to what PCA shows, in designing and
evaluating pattern discovery algorithms, we should take
metric structures into consideration as well as the repeti-
tions and pitch related features in the patterns.

This investigation is a starting point for future work on
using extracted pattern features for pattern classification
and discovery. More concretely, we can further use the fea-
tures to cluster and classify the patterns into tune families;
using other metadata in the annotations, we can also corre-
late the features to the descriptions of annotators and motif
classes; the features after PCA transformation can be used
to explore, evaluate and compare algorithmically extracted
patterns with human annotations.
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